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ABSTRACT
Cyber testbeds provide an important mechanism for experimentally
evaluating cyber security performance. However, as an experimen-
tal discipline, reproducible cyber experimentation is essential to
assure valid, unbiased results. Even minor differences in setup, con-
figuration, and testbed components can have an impact on the
experiments, and thus, reproducibility of results. This paper docu-
ments a case study in reproducing an earlier emulation study, with
the reproduced emulation experiment conducted by a different re-
search group on a different testbed. We describe lessons learned as
a result of this process, both in terms of the reproducibility of the
original study and in terms of the different testbed technologies
used by both groups. This paper also addresses the question of how
to compare results between two groups’ experiments, identifying
candidate metrics for comparison and quantifying the results in
this reproduction study.

CCS CONCEPTS
• General and reference → Experimentation; Metrics; • Net-
works→ Network experimentation.
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1 INTRODUCTION
Cyber testbeds have been established over the past two decades
to provide a platform for research and experimentation on net-
works [8]. Some examples include Emulab [28], DETER [6, 19],
Common Open Research Emulator (CORE) [3], minimega [17], and
DARPA’s National Cyber Range [10]. Uses of cyber testbeds include
test and evaluation, identification of network performance, cyber
security investigation, and training [14, 24]. Experimental frame-
works such as DEW [18] have been developed to run structured
experimental scenarios on these testbeds.

In recent years, there has been increasing interest in reproducibil-
ity in cyber experimentation. Reproducible results are foundational
in science because they provide evidence that discoveries are com-
pletely documented and provide assurance that reported results
are not biased. On the one hand, reproducibility in cyber exper-
imentation should be easier than for other scientific disciplines
because all of the experimental artifacts (e.g. source code, soft-
ware for experimental infrastructure, in-experiment applications,
configuration files, etc.) can be made available to other research
groups to download, install, and run. On the other hand, however,
small differences in cyber experimental setups can lead to large
changes in results, making reproductionmore difficult but alsomore
urgent/necessary. These small differences can include different ex-
perimental cluster/testbed host configurations, imprecise synchro-
nization of clocks between cluster nodes and in-experiment virtual
machines (VMs) leading to differences in experimental sequenc-
ing, different hypervisors used to implement in-experiment VMs,
and lack of control over random number seeds used by operating
systems and applications. A recent ACM survey on reproducibility
in scientific computing [15] describes many challenges similar to
those faced in reproducible cyber experimentation, including differ-
ences in operating systems, software and hardware, kernels, system
resources, etc. A more general discussion of scientific replication
and reproducibility is found in [21].

This paper describes a reproduction study of the minimega exper-
imental results described in [32] on adversary port discovery versus
detection by intrusion detection system (IDS). The original study
considered a scenario where an attacker has a malware presence
in a power grid supervisory control and data acquisition (SCADA)
system. The study developed a mathematical model to describe the
time evolution of an attacker’s success in discovering vulnerable
SCADA devices, and a defender’s ability to detect the attacker’s
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discovery attempts. The mathematical model was validated against
experiments using the minimega emulation-based testbed. Subse-
quently, the Sandia National Laboratory (SNL) authors of that paper
worked with researchers from Texas A&MUniversity (TAMU) to de-
ploy the experiment on the TAMU CORE emulation-based testbed,
collect results, and compare the TAMU results against the minimega
results obtained in the original experiments. The purpose of these
comparisons is to determine the degree to which the emulation-
based experiments described in [32] are reproducible on a different
testbed, and to measure the degree of correspondence between the
original and reproduced experiments.

An experiment is reproducible if results from the same experi-
ment can be independently obtained by different researchers, pos-
sibly with different tools [15]. The intent behind this work is to
evaluate the reproducibility of [32] and understand the degree of
coordination required between research groups to reproduce the
paper’s results. In addition, the process of reproducing the origi-
nal experiment led to questions about how experimental results
should be compared, which metrics should be used, how closely
do they need to agree (given inherent randomness associated with
emulation-based experiments), and ultimately, how to consider
when a cyber experimental result is indeed reproduced.

This paper is organized as follows. We first introduce the ex-
periment that we considered in this reproduction study. We then
describe the testbeds that were used in the original study and in
the reproduced study, highlighting the differences between these
testbeds. We describe the experimental design and how results
were collected, and provide observations regarding the process of
reproducing the experiment. We then define different metrics for
quantitatively comparing these results and apply each of these met-
rics to both sets of results. Analysis and observations regarding
these comparisons are provided next, and the paper concludes with
summary remarks and suggestions for future research.

2 ASSESSING DETECTION OF ADVERSARY
NETWORK SCANNING IN EMULATION

In this section we describe how we assess detection of adversary
network scanning using emulation. First, we describe the topology
and scenario considered in this paper, and then describe how it is
modeled in the two different emulation testbeds used in this repro-
ducibility study. The processes used for running the scenarios and
collecting data are described, and this section concludes with some
discussion regarding the amount of interaction required between
the two groups to reproduce the experiment.

2.1 Scanning/detection topology and scenario
The network scanning/detection experiments described here are
motivated by the CRASHOVERRIDE attack used in the 2016 Ukraine
power grid attack [2]. We assume the attacker, which has a pres-
ence on the industrial control system (ICS) network, is scanning the
network to identify the IP addresses and port numbers associated
with vulnerable remote terminal units (RTUs). Concurrently, the
defender is using an IDS to detect the attacker’s scanning activity.
Following the analysis described in [32], we measure the number
of vulnerable RTUs discovered with respect to time, and measure

the detection probability and the time that the attacker’s scans are
detected.

The experimental setup, described in detail in [32], includes VMs
that represent the Nmap scanning, Snort detection, router, and RTU
nodes. The scanning node uses Nmap to identify the IP addresses
of RTU nodes with an open port that represents a "vulnerable"
service [13]. Nmap performs this discovery in two stages: it uses
Internet Control Message Protocol (ICMP) echo/echo-reply mes-
sages to discover available hosts, and it uses Transmission Control
Protocol (TCP) connection establishment requests to discover open,
closed, or filtered (non-responsive) ports. (In the experiment, Nmap
is configured to probe only one port per host, to prevent any insta-
bilities that may result from scanning many ports per host.) Nmap
provides command-line parameters to configure its operation, e.g.
to evade detection by an IDS. For example, the user can use the
(randomize-hosts) parameter to cause Nmap to search host IP ad-
dresses randomly rather than sequentially, to make the scan less
obvious to IDS. We found the randomization of port order in the
scanning to be a critical issue in reproducibility, as discussed in Sec-
tion 3, and cannot be exactly replicated in the emulations because
minimega and CORE do not allow control over random number
seeds. Additionally, the host group size can be adjusted using the
max-hostgroup parameter, which along with scan-delay, can be used
to adjust the intensity of the scan. Decreasing max-hostgroup and
increasing scan-delay will cause the scan to be less detectable by
an IDS, but it will increase the amount of time required to scan all
available hosts and ports.

The experimental setup uses Snort as the intrusion detection
system, which was selected because it is open source and widely
used [7]. In the original and reproduced experiments we config-
ure Snort to use the sfPortscan module to detect TCP connection
requests. With this module (in the "low" setting), Snort counts the
number of rejected connections observed within a 60 second time
window. If the number of rejected connection attempts exceeds
a threshold (5 for the "low" setting), Snort isues an alert, which
includes the source and destination IP addresses of the probe that
exceeded the threshold.

The experimental topology, Nmap and Snort software, and emu-
lation environments were used in this reproducibility study to run
four different scenarios - two attacker strategies combined with
two experimental formulations where all randomness is enabled or
removed (intermediate formulations of randomness were assessed,
but are not presented in this paper for brevity). The outputs of
the experiments are the number of open, closed, and filtered ports
found as a function of time and the probability that the attacker is
detected before time t .

2.2 Emulation experimentation
Emulation-based experimental testbeds were used by both groups
to assess port discovery and detection times because these testbeds
provide a flexible, scalable platform for constructing and running
experiments. Furthermore, emulation (whether based on virtual
machines or containers) allows experimenters to use real software
for scanning and intrusion detection, increasing the fidelity of the
experiment (because the experiment is not using an abstract repre-
sentation of the code) and increasing the likelihood of successful
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reproduction (because the software versions that were used in the
original experiment were identified). Although both groups used
the same software, software versions, and experimental designs and
methods, each group used different emulation testbed technologies.
These technologies are described in more detail below.

2.2.1 minimega. minimega [17] is a set of open-source tools for de-
ploying andmanaging experiments using virtualmachines. minimega
uses QEMU [5], KVM [16], and Open vSwitch [12] to create virtual
network topologies. In addition, minimega includes mechanisms
for launching applications and collecting experimental results. In
this set of experiments, minimega APIs were used to launch and
manage Nmap and Snort.

In the original experiment, the VMs were run on a single phys-
ical node, with dual 2.1 GHz Intel ES-2683v4 processors with 16
cores each (32 cores per physical node), 512 GB of RAM, running
Ubuntu 18.04. We used our own tool called ScOrch (Scenario Or-
chestrator) to manage experimental components such as topologies,
applications, and experimental parameters (similar to DEW [18]),
and facilitate data collection for analysis. The topology remains the
same across all scenarios - a single control center subnetwork, single
SCADA subnetwork consisting of eight substations and three RTUs
per substation (for a total of 24 RTUs), and a router that connects
both subnetworks. The scanning workstation (the "compromised",
or attacker node) is on the control center network and runs Nmap.
The scanned hosts (or "victim" nodes) are on the SCADA network,
which has an IDS running Snort [7]. SCADA network devices are
configured as open (four devices), closed (eight devices), or filtered
(12 devices) using the same techniques as described in 2.2.2. In sce-
narios that require random packet dropping, the nodes’ interfaces
are configured with the appropriate drop probability (ten percent
in these experiments) using the following command: iptables -A
INPUT -p tcp -m statistic --mode random --probability
0.10 -j DROP.

2.2.2 RESLab testbed background. TAMU’s Resilient Energy Sys-
tems Laboratory (RESLab) testbed runs real-time power system
simulation and communication network emulation with the in-
tegration of industrial control and protective devices [23]. The
communication network emulation is using CORE [3] in one Linux
virtual machine, using FreeBSD jails running in the VM to emulate
network nodes. The CORE VM is configured with 16 CPUs, 32 GB
memory, and 200 GB hard disk storage.

The suitability of CORE for emulating smart grid networks was
shown in [30], where authors compared works on co-simulation
and discovered CORE to be suitable for large-scale simulations and
also found applications in the testbed to be easily deployable to
embedded devices. Similarly, an Army microgrid communication
network has been emulated with CORE [31] to demonstrate cyber
intrusions and analyze their impacts.

Within CORE, the TAMU testbed establishes the same one con-
trol center with eight substation communication network as used in
the original study, which is shown in Figure 1. There is one node in
the control center subnet that monitors and controls the devices in
substations. In each substation, there are three nodes to model three
RTUs. The emulated network in CORE has two broadcast subnets:
one for the control center, and the other is for the eight substations,
with three RTUs per substation. Although the IP addressing scheme

in the CORE topology, is different from the minimega topology, in
both cases the IP addresses are allocated such that Nmap only scans
these IP addresses, and doesn’t scan others (which could lead to
biases in timing results).

Following [32], the same parameters in the RTUs in CORE are set
as open, closed, and filtered. The experiment uses SSH as a proxy for
"vulnerable" ports, with open and closed nodes configured through
each host’s SSH settings, and the filtered node configured using
iptables -A INPUT -p tcp --destination-port 22 -j DROP.
The experiment uses four open, eight closed, and 12 filtered nodes,
as in [32]. We also add packet loss possibilities for communication
links to emulate different communication scenarios, such as con-
sidering ten percent packet drop for each link. In CORE, each node
is running as a Linux container (using FreeBSD jails), unlike in
minimega where the nodes are each hosted in a VM (KVM).

Figure 1: Eight-Substation Communication Network Emula-
tion in CORE

2.2.3 Testbed comparison. In comparing the two testbeds, one
question is whether differences in experimental results arise due
to the use of containers in RESLab versus VMs in minimega. A
primary difference between VMs and containers is that containers
provide a way to virtualize an operating system (OS) so that multi-
ple workloads can run on a single OS instance. Unlike containers,
in VMs, the hardware is being virtualized to run multiple OS in-
stances managed through a hypervisor. Containers, having limited
resource access, face challenges hosting resource-intensive applica-
tions like Snort. Still, the advantage of using a container over a VM
is that the application or service running in a VM is OS dependent,
but containers sharing a common OS provide a convenient plat-
form to run multiple executables. Hence, containers are preferred
when the priority is to maximize the deployment of a number of
applications on a minimal number of servers [9]. Containers are
usually light-weight [27], with a minimal startup time [25], as well
as requiring less memory space, making them a viable option for
large scale deployment. From the backup and restoration aspect,
containers are less reliable, as a single glitch in the OS can affect
all the containers whereas VMs are fully isolated, so they are more
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Sources of Deterministic Stochastic
Randomness Formulation Formulation
nmap address fixed sequence random sequence
search order same for each trial varies between trials
packet loss no loss (none) random drops

with prob=0.1
Table 1: Experimental Design Controlling for the Sources of
Randomness

reliable. Additionally, VMs enable diversity in running OS-specific
applications. Container-based testbeds face more challenges when
scenarios require execution of different OS environments.

2.3 Reproducing the results - experiment
design and data collection

The experimental design was the same for minimega and CORE.
The experiments used two formulations of randomness in the exper-
iment, summarized in Table 1. The first formulation tested involved
no randomness: the node ordering for the Nmap address search was
fixed, and there were no dropped packets. The second formulation
used random port ordering and dropped packets. Intermediate for-
mulations (e.g. fixed Nmap node ordering, with dropped packets)
were also evaluated, but results are not presented here for brevity.

We ran 100 replicates of the formulations listed in Table 1 for
each of two attacker strategies. The first attacker strategy consists
of a “slow and stealthy” attacker. This corresponds to a host group
size of four and a delay of ten seconds. The second attacker strategy
consists of a “fast and loud” attacker, which corresponds to a host
group size of six and a delay of five seconds. We ran the four
experimental combinations of randomness in the port ordering and
packet drops listed in Table 1 for each of these two strategies. This
involved eight experimental scenarios, where each experimental
scenario involved 100 replicates.

To efficiently reproduce the experiment in RESLab, a multi-
thread Python script is used to run the Nmap port scan and Snort
intrusion detection within CORE to collect experiment data in the
same way as in the minimega experiments, as shown in Algorithm
1. After running the configured network in CORE, the Python script
will start Snort and run the Nmap port scan n times to collect the
Nmap port scan file and Snort alert and log files separately for
each experiment. Additionally, we store the traffic data in Wire-
shark pcap files as a reference. The Snort IDS runs in the backbone
network in the VM, and Nmap runs in the emulated network in
CORE. If the Snort keeps running, the Snort alert and log files will
save all Nmap port scan experiments, which makes it hard to syn-
chronize the results for each experiment. Due to limited resources
with containers, we have to kill the process of Snort with kill -9
’pgrep snort’ for each experiment as shown in Algorithm 1. For
each Nmap port scan experiment in RESLab, the script starts the
Wireshark instance in CORE to capture all traffic in the network.
Then, the script starts both Snort for intrusion detection and Nmap
for port scanning and applies the strategies specified in Table 1.
Once Nmap is finished, the script saves all results from Wireshark,

Snort, and Nmap into specific files. After the files have been saved,
the script stops Snort until the next experiment starts.

The inputs are the Nmap scanning parameters, the number of
experiments n and the commands to start Wireshark, Nmap and
Snort. The value of n determines how many experiments will be
performed for the specified Nmap port scan strategy with the cur-
rent network configuration. With the host-group and scan-delay
parameters, the Nmap command specifies the Nmap strategy to be
either Slow and Stealthy or Fast and Loud. The scan-order parame-
ter determines how Nmap scans ports in the network, Random or
Ordered. The Random scan sequence uses the randomize command,
while the Ordered scan sequence uses -iL with a predefined scan
sequence file. After each experiment run is completed, results are
saved in the Wireshark pcap files, Nmap port scan files, and Snort
alert and log files.

Algorithm 1 Configuration Emulation Environments
1: Input = Nmap scanning parameters: max-host-group min-host-

group scan-delay, scan-order, number of experiments: n
2: for i in (1, n) do
3: Start Wireshark and Snort
4: Perform Nmap port scan
5: Save Wireshark, Snort, Nmap files to Folder i
6: Stop Snort
7: Stop Wireshark
8: end for
9: Output = wireshark pcap files, Nmap port scan files, Snort alert

and log files

2.4 Reproducibility observations
The purpose of this work was to assess the reproducibility of the ex-
periments described in [32]. Ideally, all of the information needed to
reproduce the experiment would be contained in the original paper
and in supplemental sources, e.g. experiment artifact repositories.
However, our experience with this study showed that there was
still a degree of coordination required to reproduce the experiment.
Even after sharing experimental artifacts (e.g. minimega topology
files, ScOrch orchestration files, Snort configuration files, etc.), the
teams found that some details were missing. First, the teams had
to coordinate on the assignment of open, closed, and fixed ports
to the hosts, and the order in which Nmap would scan them. The
original paper did not consider a fixed order scan, so the ordering
detail was not included.

Additionally, though the original paper described that iptables
were used to simulate dropping of packets, the specific details of
the iptables configurations were not included. Hence, the teams
discussed iptables -A INPUT -p tcp destination-port 22
-j DROP for filtered nodes and iptables -A INPUT -p tcp -m
statistic mode random probability 0.1 -j DROP for all nodes
with packet loss.

A further issue that was identified was killing Snort between
experiment trials. If Snort is not killed between trials, TCP reset
packets from a trial can potentially affect the timing of alerts in a
subsequent trial. The teams initially noted significant discrepancies
between the SNL and TAMU results. It was only after alert and
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packet capture files were shared and examined that the teams recog-
nized that one set of experiments killed Snort between trials and the
other set did not. Once this issue was recognized and the process
of killing Snort between experimental trials was made consistent,
results between the two platforms matched up much more closely.

With data successfully collected from both groups’ testbeds, pro-
cessing and data analysis of experimental results from both testbeds
was performed by one of the research groups, and is described in
the next section.

3 COMPARING RESULTS FROM TWO
EMULATION TESTBEDS

Each replicate of the eight experimental scenarios outlined above
(fast/slow, packet drop/no drop, random/deterministic host order)
produced a time series of ports discovered over time. For exam-
ple, at a given time, say 30 seconds, there may be two open ports
discovered, five closed ports discovered, and nine filtered ports
discovered. Since there are 100 instances of these time series for
each experimental scenario, we can calculate statistics at each time
point such as the mean number of closed ports discovered at each
time point or the variance of the closed ports discovered at each
time point. Furthermore, the 100 points can be used to generate a
cumulative distribution function (CDF) of ports discovered at each
time point. The cumulative distribution function is the probability
that a random variable (e.g., number of closed ports found) is less
than x , where x ranges from zero to eight closed ports in these par-
ticular studies. The CDF is a probability distribution, so its values
are bounded between zero and one.

An example of the CDF plot and its construction from the 100
replicates at a particular time point is shown in Figure 2. Because
we have distribution information in the form of a CDF at each time
point, we can use statistical metrics for comparing distributions.
These are outlined in Section 3.2 below. First, we make some general
observations about metrics in the next section.

3.1 Definition of comparison metrics
Reproducibility involves comparison between two sets of results,
and using metrics to measure the degree of similarity between the
experiments. In this paper, this involves comparing results from
two cyber emulation platforms, minimega and CORE. As we inves-
tigated metrics with which to compare the experimental results
outlined above (e.g. replicates of time series data), we were guided
by principles from the validation community. There is a growing
community focused on the validation of computational model re-
sults (typically, these are physics or engineering models involving
the solution of partial differential equations) [22]. In the context of
computational simulation, validation refers to the comparison of a
computational simulation with physical experiments to determine if
the estimated accuracy of the model is adequate for the intended use of
the model [22]. Many validation metrics have been defined to help
make the comparison, but the degree of mismatch accepted (e.g.
accuracy requirement) between the model and physical experiment
is typically defined by the decision maker or ultimate user of the
model.

Figure 2: A CDF of port discovery is constucted from the 100
replicates at each timestep. Shown is the "closed" port dis-
coveries at timestep 20 for both SNL and TAMU.

An ideal feature of a validation metric is the inclusion of un-
certainties both from the simulation results and the physical ex-
periment results in the metric. As we have stated, the analysis we
provide here is not formally validation in the strict sense: we have
not run the scanning/detection experiment on physical hardware
to compare with the emulation results. However, we can use these
principles found in validation for the comparison of emulation
results across two or more different emulation platforms.

With that in mind, we identified four metrics to consider for
comparing the datasets from the scanning/detection experiments.
Thesemetrics are generalizable to any experimental situationwhere
one has replicates from both of the experiment platforms (minimega
and TAMU CORE in this case). The replicates (e.g. 100 replicates of
minimega and 100 replicates of CORE) represent inherent variability
induced by timing differences, kernels, operating systems, etc. as
previously discussed. The metrics compare the distribution from
each of these platforms. The metrics are outlined in the section
below.

3.2 Metrics considered
The scanning/detection experiments produce time series data at
uniform, one-second intervals. Our focus was primarily on under-
standing the differences in the number of ports discovered over
time, which is a discrete variable at each time point. However, we
also investigated the differences in alert times which is a continuous
variable. The 100 replicates from both TAMU and SNL indicate sig-
nificant variability in the experiments where random host ordering
and/or packet dropping occurs. This variability can be from random
ordering of ports in the scanning phases, dropped packets, or dif-
ferences in the emulation environment. Our focus was to tease out
which differences can be attributed to the emulation environment
vs. the randomness in aspects of the experiment.

The metrics we investigated are:
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3.2.1 t-test. The t-test is a widely used statistical test to deter-
mine if there is significant difference between the means of two
groups. [20] The test statistic (t ) converges to the t-distribution,
and allows rejection of the null hypothesis of X̄1 = X̄2 at various
confidence levels. This can be seen in Equation 1. We note that a
p-value of 1.0 indicates a perfect match between the means.

t =
X̄1 − X̄2

sp ·

√
1
n1
+ 1

n2

where

sp =

√
(n1 − 1) s2

X1
+ (n2 − 1) s2

X2

n1 + n2 − 2

(1)

3.2.2 Kolmogorov-Smirnov Test. The Kolmogorov-Smirnov (KS)
test is a well known non-parametric statistical test for equality
of distributions. [1] The KS distance between two random vari-
ables is the maximum vertical distance between their cumulative
distribution functions, CDF1(x) and CDF2(x), as shown in Equa-
tion 2. Note that CDFi, j (x) refers to the CDF from distribution i
based on j sample points. The test statistic (D) converges to the Kol-
mogorov distribution, and allows rejection of the null hypothesis of
CDF1(x) = CDF2(x) at various confidence levels. Again, a p-value
of 1.0 indicates perfect agreement between the distributions.

Dn,m = sup
x

|CDF1,n (x) −CDF2,m (x)| (2)

3.2.3 Area metric. The area metric also quantifies the difference
between sample CDFs, however it accounts for the entire difference
between the functions rather than just the maximum vertical dis-
tance. [11] The metric calculation is shown in Equation 3. Unlike
the other tests, the units for this metric are the same as the mea-
surements themselves, and there isn’t a formal acceptance measure
or statistical test, but a value of 0.0 indicates perfect agreement.

An,m = ∆(x)

xend∑
x=1

|CDF1,n (x) −CDF2,m (x)| (3)

3.2.4 Relative Hausdorff Distance. The Relative Hausdorff distance
was originally developed for graph analysis, to compare quantities
like the complementary cumulative degree distribution of large
graphs [4, 29] The distributions F1(x) and F2(x) are (ϵ , δ ) close by
the Relative Hausdorff distance if they meet the constraints shown
in Equation 4.

∀x ,∃x ′ ∈ [(1 − ϵ)x , (1 − ϵ)x ′]

such that

|F1(x) − F2(x
′)| ≤ δF1(x)

(4)

For our calculations, we used the additional constraint of ϵ = δ
which weighs the effects of the vertical and horizontal differences
equally.

3.3 Analysis and observations
To quantify the experimental differences, our primary focus was on
the number of ports discovered over time. We only show results for
closed port discovery; the results are similar for open and filtered
ports. For each of the eight experimental scenarios described in
Section 2.3, this port discovery time series data was compared using

(a) Fast (b) Slow

Figure 3: Comparison of closed port discovery for (a) Fast
and (b) Slow experiments, deterministic formulation.
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(a) Fast (b) Slow

Figure 4: Comparison of closed port discovery for (a) Fast
and (b) Slow experiments, stochastic formulation.

themetrics listed above. This in turn results in a time series of metric
values comparing the TAMU and SNL runs for each time step for
the duration of the experiment and highlights points of variability.
Figures 3 and 4 show this comparison for each of the metrics. These
figures encompass four of the eight scenarios. Figure 3 shows the
closed port discovery for the fully controlled scenario with fixed
port ordering and no dropped packets both for the fast and slow
attacker strategies. These metrics indicate no variability across
the entirety of this fully controlled scenario, which serves as a
good baseline to indicate that the two emulation testbeds behave
identically in the absence of randomness.

The pair of experiments with both modes of randomness shown
in Figure 4 appear to produce similar but not identical mean results.
Here, the statistical metrics indicate greater variability between
the TAMU and SNL runs. This variability is also visible to the eye,
as the plots with the mean port count don’t align as well as they
do in Figure 3. It is also clear that the fast attacker strategy lends
itself to more consistent results than the slow. This makes sense as
duration of the experiment is shorter, providing less opportunity
for the replicates to become offset in terms of port discovery.

All of the described metrics clearly show there is a difference in
variability between the controlled and random experiments. The
question remains as to which metrics are most useful for comparing
the variability within an experiment. Ultimately we find that the
combination of the KS-test and area metrics is most suited to this
task.

We find the t-test is a poor metric for this discrete data, as this
test is looking at the difference in means rather than the distribution.
Thus a single step up in port count for a number of the replicates
(e.g. 3 found ports to 4), can result in a very different mean to the
other group as well as a larger variance. This can be seen when
looking at Figure 4 - the resulting t-test p-values show far more
variability than those of the KS-test.

Additionally, we find the Relative Hausdorff distance doesn’t
completely suit our use-case as it tends not show the nuance of the
variability well. It instead has a tendency to make large jumps in
magnitude, often to discrete values. This is likely due to the fact
that though it was designed with discrete data in mind, the CDFs
that we are evaluating are much narrower in range, and far more
stair-stepped in nature. This seems to manifest itself as these curves
having a minimum Relative Hausdorff distance of 1.0 as soon as
they become offset.

The area metric, in contrast, highlights small fluctuations values
that correspond to the differences between the CDFs. This metric
provides us with a better tool for teasing out small differences
between the environments. However there is no formal acceptance
metric or statistical test for this value. This then leaves us with
designating an arbitrary threshold for what is deemed "similar."

The KS-test provides more clarity in this regard. The test statistic
converges to the Kolmogorov distribution, and allows rejection of
the null hypothesis ofCDF1 = CDF2 at various confidence levels. If
thep-value is greater than 0.05 (at a 95% confidence level), we cannot
reject the null hypothesis that the distributions are the same, so the
CDFs would be considered similar with larger p-values indicating
more similarity. These p-values often mirror the fluctuations seen
in the area metric, but are not always quite as nuanced. Many
small differences in the CDFs are missed, as the p-value remains
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1.0 during these fluctuations. Hence, when looked at together, this
p-value and area metric provide a nice mix of statistical significance
and insight into the slight differences between experiments.

(a) Fast discovery, deterministic formulation

(b) Slow discovery, stochastic formulation

Figure 5: Alert time distributions of (a) the least and (b) the
most variable experimental scenarios when comparing port
discovery.

Though port discovery was themain focus of our comparison, we
also looked at the distribution of alert times for the 100 replicates of
each run. This data has the advantage of being neither a time series,
nor discrete values which seems to lend itself well to comparison by
the KS-test. However in reality the results can sometimes contradict
what is seen when comparing the port discovery data.

Figure 5 shows the alert time distribution for two of the ex-
perimental scenarios. Figure 5a displays the distributions of alert
times for the least variable scenario when comparing port discov-
ery. However as can be seen, the alert time distributions appear
quite different. This is born out by a p-value of 0 when comparing
these curves with the KS-test. In reality we can see that the raw
alert times of these experiments differ on the millisecond scale,

but because they are so tightly clustered, their distributions are
significantly offset.

Figure 5b shows the distributions of alert times for the most
variable scenario when comparing port discovery. Here the opposite
phenomenon is at play. Alert times in this scenario differ on the
scale of tens of seconds, but because they are more dispersed, the
distributions actually appear quite similar and yield a KS-test p-
value of 0.155.

This illustrates that strictly comparing the alert time distribu-
tions of two sets of experiments may not be sufficient to quantify
the variability between them. If we want alert times to fall into
the same distribution, the experiments in Figure 5a would not be
considered the same. However if we want the alert times to only
differ by some small margin, these experiments would indeed be
considered similar. Comparison metrics depend on the question
being asked. It may not matter if the statistical tests indicate the
distributions are different across platforms but the differences are
so small that for practical purposes, we would consider them the
same. When comparing emulation results across platforms, one
must carefully consider the question being addressed and identify
thresholds for absolute differences in mean results, as well as full
statistical comparisons.

4 CONCLUSIONS AND FUTUREWORK
Reproducible results are essential for progress in cyber experimen-
tation, and this paper describes a case study in reproducing the
cyber experimental results described in [32]. Ideally the originally
published study, along with any experimental artifacts publicly
located in a repository, would be sufficient for a second research
group to reproduce the original study. In this case, differences in
testbed technologies and missing details encountered while repro-
ducing the experiment required some coordination between the
groups before the second group started to produce similar results.
Further research and capabilities, such as those being developed
by the Sharing Expertise and Artifacts for Reuse through Cyber-
security Community Hub (SEARCCH) project [26], are needed
for comprehensively sharing experimental artifacts. In addition,
further research is needed for understanding differences between
common cyber experimentation platforms, so those differences can
be considered when comparing experimental results. This paper
also identified a need to consider different metrics for quantitatively
comparing results from the two sets of experiments, depending (for
example) on whether an analyst wants to observe differences in av-
erage results across testbed environments, and if an analyst wants
to use an accepted statistical test to determine if the distribution of
results are similar. Additional research in applying other existing
metrics or developing new ones is needed, along with additional
guidance on when to use these metrics to compare experiments
for reproducibility or validation studies. Additional reproducibility
studies on other cyber experiments are needed to test the general-
izability of these metrics.
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