
Building Reproducible Video Streaming Traffic Generators
Calvin Ardi

USC/ISI
Marina del Rey, CA, USA

calvin@isi.edu

Alefiya Hussain
USC/ISI

Marina del Rey, CA, USA
hussain@isi.edu

Stephen Schwab
USC/ISI

Marina del Rey, CA, USA
schwab@isi.edu

ABSTRACT
Video streaming traffic dominates Internet traffic. However, there
is a dearth of tools to generate such traffic on emulation-based
testbeds. In this paper we present tools to create representative and
reproducible video streaming traffic to evaluate the next generation
of traffic classification, Quality of Service (QoS) algorithms and
traffic engineering systems. We discuss 27 different combinations of
streaming video traffic types in this preliminary work, and illustrate
the diversity of network-level dynamics in these protocols.
ACM Reference Format:
Calvin Ardi, Alefiya Hussain, and Stephen Schwab. 2021. Building Repro-
ducible Video Streaming Traffic Generators. In Cyber Security Experimenta-
tion and Test Workshop (CSET ’21), August 9, 2021, Virtual, CA, USA. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3474718.3474721

1 INTRODUCTION
Video streaming traffic has and continues to be the majority of Inter-
net traffic, accounting for roughly 58 % of global Internet use (2020,
[14]) and is predicted to be 82 % of all traffic by 2022 [6]. Delivering
video across the Internet is supported by a diverse set of infras-
tructure, client/server software, encoding algorithms, and network
protocols. Although many parts of the end-to-end video delivery
on the Internet has been studied in great detail [1, 3, 9, 11], there
are no readily available tools for video traffic to support testbed-
based experiments. Prior work in traffic generation and simulation
typically focus on maximizing throughput for benchmarks and
stress testing [12] or on simulating the behavior of the underlying
protocols (TCP, UDP, and others) [2, 15, 16].

While experimenters can iterate on and test their network system
components over the Internet, often coupling them with popular
content providers, there are a lack of tools to support principled
experimentation with video traffic on testbeds and the Internet.
Experimenters need these video traffic tools in order to evaluate
the next generation of systems for network traffic classification and
engineering and QoS algorithms. These tools should allow exper-
imenters to test and evaluate these systems and their individual
components during its development, and include both client and
server endpoints used for watching and delivering video. These
tools should also send traffic responsibly on the Internet, in order
to minimize impact on third-party services.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CSET ’21, August 9, 2021, Virtual, CA, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9065-1/21/08. . . $15.00
https://doi.org/10.1145/3474718.3474721

In this paper, we present our preliminary work towards building
video streaming traffic generators that are both representative and
reproducible. We implement in our generators both the client and
server endpoints, and each individual endpoint can be used on
its own to test additional components within the network. Our
generators produce representative traffic on-the-wire by using freely
available or permissively-licensed videos and streaming them across
a variety of transport protocols. We enable reproducible experiments
by emulating the process of “watching” videos with a systematic
and well-defined methodology. We discuss in § 2 current state-of-
art video streaming protocols and how they can be used to recreate
representative and reproducible scenarios on an emulation-based
testbed. Our tools support 27 video streaming protocol and software
combinations, and can be fully automated. Further, they can be
configured to run completely end-to-end within a self-contained
environment on the testbed or reach-out to remote servers and
services over the Internet to provide even more realism.

We discuss in § 3 the varied network-level traffic patterns gen-
erated from a sample of the 27 protocols on an emulation-based
testbed. We analyze the underlying video streaming performance
and behavior on both a local network and the Internet, highlight-
ing the differences in bandwidth throughput profiles between dif-
ferent streaming and transport protocols. Our goal is to enable
representative and reproducible experiments for video streaming
traffic and this initial set of generators provides a wide spectrum
of protocols. We make our generators and tools available at https:
//mergetb.org/projects/searchlight/ in order to enable research in
this domain.

2 REPRODUCIBLE VIDEO STREAMING
TRAFFIC GENERATORS

In this section, we discuss the design decisions for representa-
tive protocols and software to enable reproducible experiments
on emulation-based testbeds.

2.1 Using Representative Protocols
There are many formats and protocols for video streaming. We con-
sider 27 combinations, that include different streaming protocols,
the encapsulation format for video streaming, and “transport” pro-
tocols, the underlying application-level protocols that move data
between client and server. We focus only on desktop browsers in
this paper, and plan on addressing mobile and other application-
specific clients as future work.

0This work was sponsored by Sandia National Laboratory (SNL) under PO2160586.
This research was developed with funding from the Defense Advanced Research
Projects Agency (DARPA). The views, opinions and/or findings expressed are those of
the authors and should not be interpreted as representing the official views or policies
of Sandia National Laboratory, the Department of Defense, or the U.S. Government.

https://doi.org/10.1145/3474718.3474721
https://doi.org/10.1145/3474718.3474721
https://mergetb.org/projects/searchlight/
https://mergetb.org/projects/searchlight/

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g
Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

Firefox client

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

Caddy server

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g
Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

nginxa server

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

Apache2a server

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g
Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g
Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

Implementation:

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH
"T

ra
ns

po
rt"

Vi
de

o
St

re
am

in
g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

= full,

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

= partial,

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

n

n

n

n

n

n

n

n

n

n

n

n

Figure 1: Network Topology

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH
"T

ra
ns

po
rt"

Vi
de

o
St

re
am

in
g

Figure 2: Protocols

Streaming protocols. We focus on Dynamic Adaptive Streaming
over HTTP (DASH), HTTP Live Streaming (HLS), and basic HTML5
video as our representative streaming protocols. While there are
many different streaming protocols available, prior work [1] has
found that DASH and HLS accounted for 83 % of video playback
time (2018), thus making the inclusion of both protocols in our
initial work a straightforward choice.

We additionally add HTML5 video to act as a baseline for eval-
uation and comparison. Although HTML5 video lacks many of
the complexities and advances in streaming technology (discussed
next), it is broadly supported in popular web browsers and easily
included by website authors. We plan to include other streaming
protocols not mentioned here as future work.

For better reproducibility, we fix the video resolution for the
entire playback duration to 480p, 720p, or 1080p. Although the
primary benefit of using Adaptive Bitrate (ABR) streaming proto-
cols (DASH, HLS) is their ability to dynamically switch resolutions
based on network conditions, our initial goal is to generate consis-
tent, and thus reproducible, traffic on the network. Fixed playback
resolution, or Constant Bitrate (CBR) streaming, is the default be-
havior of HTML5 video. We plan to provide a wider range of video
resolutions as well as resolution switching that is both dynamic
and reproducible.
Transport protocols.Our selection of streaming protocols (DASH,
HLS, HTML5) operates over HTTP (shown in Fig. 2). We have
considered other protocols like RTMP, but leave its support for
future work: prior work found that RTMP and others [1] are not
widely deployed today.

We support for multiple versions of HTTP, including HTTP/1.1,
HTTP/2, and HTTP/3 (currently an IETF draft standard) both in
cleartext when possible and with encryption. Table 1 shows the var-
ious software and supported HTTP combinations and Fig. 2 shows
both the relationship and choices between the streaming (green)
and transport (blue) protocols. The IETF QUIC Working Group is
actively finalizing standards for HTTP/3 [4] and QUIC [10], both of
which offer benefits in more effective bandwidth use, security, and
flexibility in protocol evolution. As HTTP/3’s prevalence continues
to grow, our tools will enable us to test our algorithms and systems
with realistic traffic and in a controlled, systematic manner.

We also support cleartext options when possible. While the Inter-
net is moving towards opportunistically encrypting data-in-transit
(for example, HTTP/3 will always encrypt), using cleartext has been
useful for debugging and protocol analysis. In some cases, either the
server or client software does not implement a particular feature
of HTTP. For example, while HTTP/2 cleartext is implemented in
some web servers, the major browsers do not support it.

Table 1: Supported Protocol and Software Combinations

software type HTTP/1.1 HTTP/2 HTTP/3
clear + TLS clear + TLS TLS

Chrome client
Firefox client
Caddy server
nginxa server
Apache2a server

Implementation: = full, = partial, = none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

= none a for comparison purposes

2.2 Enabling Reproducible Experiments
We are building our video traffic generators to enable reproducible
experiments for building and testing traffic engineering systems,
and client or server video applications. Our generators can also be
used to generate traffic in a self-contained manner, within a testbed,
or to remote, Internet services.

Our traffic generators provide the end-to-end application traffic
necessary for traffic engineering systems. Using simple and well-
defined generators enable us to create reproducible experiments
that system builders can use to validate and rapidly iterate over
their designs.

We build simplified, static websites for our video streaming traf-
fic generators to maximize the signal-to-noise ratio on the wire. We
focus on the video streaming content and exclude most of the fram-
ing support that generally surrounds the main content on today’s
webpages. While content like ads, comments, or other dynamically
loaded sections (“Coming Up Next”, etc.) are prevalent today, they
add an additional layer of complexity that is not needed at early
stages in the design process. Our design has enabled others to focus
their efforts on prototyping and deploying an early traffic engineer-
ing system without other irregularities—later, we plan to introduce
additional options in our servers to increase the complexity and
realism that is more reflective of today’s websites.

Finally, our traffic generators are designed to be self-contained
within a testbed environment or used with live Internet services.
We currently limit using our generators on Internet services, taking
care to remain within the typical Internet noise threshold. We plan
to carefully explore how we can emulate large amounts of traffic
on the Internet without undue impact to other users and services.

2.3 Implementation
We implement our video streaming traffic generators using the
Playwright [13] browser automation framework to coordinate and
script the client behavior and the Caddy [5] web server with config-
urations that control and implement our chosen protocols (§ 2.1).

For rapid prototyping and testing, we instrument and automate
the web browser as our video application client. Using the Play-
wright framework, we instrument the Chrome and Firefox web
browsers using JavaScript to emulate an end-user’s simple behavior
of watching video. For example, we have several automations that
emulate a user watching a video for a specified amount of time on
both local and remote services (like YouTube): our scripts will first
navigate to a specified internal or external URL, select the specified
resolution, press “play” and “watch” the video, and finally close
the browser. To retrieve ground truth, we also capture network-

Building Reproducible Video Streaming Traffic Generators CSET ’21, August 9, 2021, Virtual, CA, USA

(PCAPs) and HTTP application-level traffic for both online and
offline analysis.

On the server-side, we use the Caddy web server as it supports
a variety of HTTP protocols (§ 2.1) and is easily extensible for
our monitoring infrastructure (not covered in this paper). For eas-
ier analysis and validation on the wire, we build simple, static
webpages incorporating dash.js (DASH, [8]), HLS.js (HLS, [7]), or
plain HTML5 for videos, and serve them at unique URL endpoints.
For example, 1080p video playback using DASH is available at
https://example.internal/dash-1080p.htm, and so on. To fur-
ther increase performance, we also pre-compute video content
into relevant formats and chunks for ABR streaming as opposed to
dynamically transcoding on-demand.

We use and support our implementation on emulation-based
Linux testbeds and standalone computers (Linux, macOS), with
support on Microsoft Windows planned. Our traffic generators,
tools, and analysis are available at https://mergetb.org/projects/
searchlight/.

3 EXPERIMENTATION
In this section, we present a series of initial experiments designed
to demonstrate our traffic generators and illustrate some of the
underlying video streaming behavior on the network. We use our
experiments to understand the dynamics on the network for the
various streaming protocols (§ 3.1), how our video streaming traffic
generators handle multiple clients (§ 3.2), and the network through-
put between different HTTP versions (§ 3.3).

3.1 Differences between Video Streaming
Protocols

Our experiments indicate that each video streaming protocol has
unique bandwidth-throughput characteristics at the network level.
We run our traffic generators on one Google Chrome client, con-
necting directly to a server and watching video over 3 streaming
protocols at 1080p for roughly 90–120 s on a 10 Mbps link.

Fig. 3 shows three graphs of data transferred over time, binned
by 1 s. Each graph contains a line for each TCP connection (most
browsers support up to six parallel connections in HTTP/1.1) and
the top-most line (sometimes overlapping with other lines) is the
sum across all connections. Once we start playing video at roughly
5–15 s, we see that each streaming protocol can effectively use
all available bandwidth. We observe that DASH (Fig. 3b) and HLS
(Fig. 3c) use bandwidth more efficiently as shown in the various
“valleys” in each line: this behavior is likely due to a more intelligent
buffering strategy.

DASH also takes advantage of multiple connections by stream-
ing audio and video in separate connections, as seen in Fig. 3b. The
DASH protocol separates audio and video file chunks, in contrast
to HTML5 and HLS, in which each file or file chunk contains both,
respectively. Initially, connection ‘1’ downloads video and ‘2’ down-
loads audio chunks, switching once at roughly 30 s. We do not have
an explanation for why a connection switches at this point, but
hypothesize that connection management decisions are made at
the underlying browser-level rather than at the video player.

Finally, HLS in Fig. 3c seems to make the most efficient use of
bandwidth and number of connections. Both the supporting content
(HTML, CSS, JavaScript) and video content are handled with only

one connection (‘0’). In contrast to DASH, video content chunks
for HLS contain both audio and video segments (and thus would
not necessarily benefit from parallel connections). We believe that
connection ‘1’ was opened (and subsequently closed shortly after)
as a browser-level performance optimization.

Although not shown here, we have also observed that DASH and
HLS are capable of buffering enough video to continue playback
against a temporary connection disruption. We did not observe
this behavior with HTML5. We next look at the profiles of video
streaming on different HTTP versions.

3.2 Handling Multiple Client Generators
We look at the network throughput profiles of running multiple
generators simultaneously. Our setup is the same as in § 3.1, except
with eight Google Chrome clients streaming from one server for
250 s on a 100 Mbps link: the network topology is shown in Fig. 1,
with clients and server located on the nodes labeled ‘n’.

Fig. 4 shows three graphs of data transferred over time, binned
by 1 s. Each graph contains a line for each of the eight client-server
node pairs, and the top-most line is the sum across all pairs.

We see that the total bandwidth use over time across all three
protocols initially maxes out the link at 100 Mbps, then exhibits
steady-state behavior similar to what we saw earlier in § 3.1, with
periodic spikes. We focus on the total throughput profile as the
individual profile of any one client-server pair is hard to distinguish.

The differences at the start of each graph in Fig. 4 show that
the initial buffer fill behavior is much more varied across protocols
when multiple client generators are used. HTML5 (Fig. 4a) uses all
the available bandwidth for 30 s before decreasing its use. DASH
(Fig. 4b) and HLS (Fig. 4c) sustain maximum bandwidth for 90 s and
110 s, respectively.

The difference in initial throughput between HTML5 and ABR
protocols (DASH, HLS) is again likely due to the difference in buffer
filling strategies, with HTML5 keeping a minimal playback buffer
(we observed earlier that HTML5 suffers early on from a disrupted
connection). While the available bandwidth to any one client is
limited due to contention, it is sufficient to maintain continuous
playback. Once all clients have reached steady-state in ABR stream-
ing, we see the usual bursty behavior as each client can quickly
refill its buffer due to the lack of contention.

Finally, we note that we are not necessarily able to observe the
video streaming Quality of Experience (QoE) with throughput pro-
files alone. For example, one of our eight clients might experience
more rebuffering events, with slight pauses in playback, than others
as that client constantly attempts to retrieve more data. We plan
on developing instrumentation for client browsers to report QoE
measurement data as future work.

3.3 Differences between HTTP Versions
Lastly, we look at the network throughput profiles of various trans-
port protocols on a remote video streaming service. We run our traf-
fic generators on one Google Chrome client, connecting to YouTube
and watching video over 3 different HTTP versions, all encrypted
under TLS, at 1440p for roughly 80 s on a 200 Mbps link.

Fig. 5 shows three graphs of data transferred over time, binned
by 1 s. While our client connects to multiple servers for supporting

https://mergetb.org/projects/searchlight/
https://mergetb.org/projects/searchlight/

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

0 20 40 60 80

time (seconds)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,309,793

d
at
a
(b
y
te
s)

tcpstream

0

1

2

3

total

(a) HTML5

0 20 40 60 80 100 120

time (seconds)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,301,350

d
at
a
(b
y
te
s)

tcpstream

0

1

2

total

(b) DASH

0 20 40 60 80 100

time (seconds)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,294,414

d
at
a
(b
y
te
s)

tcpstream

0

1

total

(c) HLS
Figure 3: Streaming video from one server to one client over multiple video streaming protocols via HTTP/1.1 cleartext, 1080p
resolution, 10 Mbps link speed.

0 50 100 150 200

time (seconds)

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

12,705,468

d
at
a
(b
y
te
s)

node pair

10.0.0.100↔10.5.1.100

10.0.1.100↔10.5.1.100

10.1.0.100↔10.5.1.100

10.1.1.100↔10.5.1.100

10.2.0.100↔10.5.1.100

10.2.1.100↔10.5.1.100

10.3.0.100↔10.5.1.100

10.3.1.100↔10.5.1.100

total

(a) HTML5

0 50 100 150 200

time (seconds)

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

12,752,476

d
at
a
(b
y
te
s)

node pair

10.0.0.100↔10.5.1.100

10.0.1.100↔10.5.1.100

10.1.0.100↔10.5.1.100

10.1.1.100↔10.5.1.100

10.2.0.100↔10.5.1.100

10.2.1.100↔10.5.1.100

10.3.0.100↔10.5.1.100

10.3.1.100↔10.5.1.100

total

(b) DASH

0 50 100 150 200

time (seconds)

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

12,759,462

d
at
a
(b
y
te
s)

node pair

10.0.0.100↔10.5.1.100

10.0.1.100↔10.5.1.100

10.1.0.100↔10.5.1.100

10.1.1.100↔10.5.1.100

10.2.0.100↔10.5.1.100

10.2.1.100↔10.5.1.100

10.3.0.100↔10.5.1.100

10.3.1.100↔10.5.1.100

total

(c) HLS
Figure 4: Streaming video from one server to eight clients over multiple video streaming protocols via HTTP/1.1 cleartext,
1080p resolution, 100 Mbps link speed.

CSET ’21, August 9, 2021, Virtual, CA, USA Calvin Ardi, Alefiya Hussain, and Stephen Schwab

0 20 40 60 80

time (seconds)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,309,793

d
at
a
(b
y
te
s)

tcpstream

0

1

2

3

total

(a) HTML5

0 20 40 60 80 100 120

time (seconds)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,301,350

d
at
a
(b
y
te
s)

tcpstream

0

1

2

total

(b) DASH

0 20 40 60 80 100

time (seconds)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,294,414

d
at
a
(b
y
te
s)

tcpstream

0

1

total

(c) HLS
Figure 3: Streaming video from one server to one client over multiple video streaming protocols via HTTP/1.1 cleartext, 1080p
resolution, 10 Mbps link speed.

0 50 100 150 200

time (seconds)

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

12,705,468

d
at
a
(b
y
te
s)

node pair

10.0.0.100↔10.5.1.100

10.0.1.100↔10.5.1.100

10.1.0.100↔10.5.1.100

10.1.1.100↔10.5.1.100

10.2.0.100↔10.5.1.100

10.2.1.100↔10.5.1.100

10.3.0.100↔10.5.1.100

10.3.1.100↔10.5.1.100

total

(a) HTML5

0 50 100 150 200

time (seconds)

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

12,752,476

d
at
a
(b
y
te
s)

node pair

10.0.0.100↔10.5.1.100

10.0.1.100↔10.5.1.100

10.1.0.100↔10.5.1.100

10.1.1.100↔10.5.1.100

10.2.0.100↔10.5.1.100

10.2.1.100↔10.5.1.100

10.3.0.100↔10.5.1.100

10.3.1.100↔10.5.1.100

total

(b) DASH

0 50 100 150 200

time (seconds)

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

12,759,462

d
at
a
(b
y
te
s)

node pair

10.0.0.100↔10.5.1.100

10.0.1.100↔10.5.1.100

10.1.0.100↔10.5.1.100

10.1.1.100↔10.5.1.100

10.2.0.100↔10.5.1.100

10.2.1.100↔10.5.1.100

10.3.0.100↔10.5.1.100

10.3.1.100↔10.5.1.100

total

(c) HLS
Figure 4: Streaming video from one server to eight clients over multiple video streaming protocols via HTTP/1.1 cleartext,
1080p resolution, 100 Mbps link speed.

0 10 20 30 40 50 60 70 80

time (seconds)

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

12,976,781

d
at
a
(b
y
te
s)

protocol

TCP

(a) HTTP/1.1 + TLS

0 10 20 30 40 50 60 70 80

time (seconds)

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000
14,459,021

d
at
a
(b
y
te
s)

protocol

TCP

(b) HTTP/2 + TLS

0 10 20 30 40 50 60 70 80

time (seconds)

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

d
at
a
(b
y
te
s)

protocol

TCP

QUIC

(c) HTTP/3 (Q050)
Figure 5: Streaming video fromYouTube to one client overmultiple transport protocols, 1440p resolution, 200Mbps link speed.

content (ads, telemetry, and CDNs), we graph the total throughput
per underlying protocol (TCP or QUIC) for simplicity. We start
video playback at around 10 s into the capture to allow enough time
to download the website’s supporting content. We observe in all
three protocols similar playback behavior in our prior experiments:
an initial spike in throughput usage to fill the buffer and compute
available bandwidth, with steady-state bursty behavior following.

While HTTP/1.1 (Fig. 5a) and HTTP/2 (Fig. 5b) have roughly the
same throughput profile, we see that YouTube leverages HTTP/3, if
available, with an overall throughput that is slightly higher. We see
in Fig. 5c an initial TCP connection, which negotiates and switches
over to the use of HTTP/3 over QUIC for the rest of the experiment
duration—the lingering TCP connection remains open, but unused,
with keepalives. We also observe a larger maximum throughput
usage of 128 Mbps compared to earlier HTTP versions (104–116
Mbps).We plan to continue adding support formore remote Internet
services and HTTP/3.

4 FUTUREWORK AND CONCLUSION
In this paper we presented tools to create representative and re-
producible video streaming traffic to evaluate next generation QoS
algorithms and traffic classification and engineering systems. We
discussed 27 different combinations of streaming video traffic types
in this preliminary work, and illustrated the diversity of network-
level dynamics in these protocols. We will continue to build our
traffic generators with the goal of scaling up on the order of e3
clients and servers. To make traffic more representative, we plan
to build models of human behavior in video streaming consump-
tion (binge watching vs. skipping around) and use these models
to drive our clients. On the network- and server-side, we plan to
emulate realistic network architectures, like CDNs and anycast,
and implement more complex websites, incorporating supporting
frame content and ABR streaming behavior. Our traffic generators
are available at https://mergetb.org/projects/searchlight/.

Figure 5: Streaming video fromYouTube to one client overmultiple transport protocols, 1440p resolution, 200Mbps link speed.

content (ads, telemetry, and CDNs), we graph the total throughput
per underlying protocol (TCP or QUIC) for simplicity. We start
video playback at around 10 s into the capture to allow enough time
to download the website’s supporting content. We observe in all
three protocols similar playback behavior in our prior experiments:
an initial spike in throughput usage to fill the buffer and compute
available bandwidth, with steady-state bursty behavior following.

While HTTP/1.1 (Fig. 5a) and HTTP/2 (Fig. 5b) have roughly the
same throughput profile, we see that YouTube leverages HTTP/3, if
available, with an overall throughput that is slightly higher. We see
in Fig. 5c an initial TCP connection, which negotiates and switches
over to the use of HTTP/3 over QUIC for the rest of the experiment
duration—the lingering TCP connection remains open, but unused,
with keepalives. We also observe a larger maximum throughput
usage of 128 Mbps compared to earlier HTTP versions (104–116
Mbps).We plan to continue adding support formore remote Internet
services and HTTP/3.

4 FUTUREWORK AND CONCLUSION
In this paper we presented tools to create representative and re-
producible video streaming traffic to evaluate next generation QoS
algorithms and traffic classification and engineering systems. We
discussed 27 different combinations of streaming video traffic types
in this preliminary work, and illustrated the diversity of network-
level dynamics in these protocols. We will continue to build our
traffic generators with the goal of scaling up on the order of 103
clients and servers. To make traffic more representative, we plan
to build models of human behavior in video streaming consump-
tion (binge watching vs. skipping around) and use these models
to drive our clients. On the network- and server-side, we plan to
emulate realistic network architectures, like CDNs and anycast,
and implement more complex websites, incorporating supporting
frame content and ABR streaming behavior. Our traffic generators
are available at https://mergetb.org/projects/searchlight/.

https://mergetb.org/projects/searchlight/

Building Reproducible Video Streaming Traffic Generators CSET ’21, August 9, 2021, Virtual, CA, USA

REFERENCES
[1] Zahaib Akhtar, Yun Seong Nam, Jessica Chen, Ramesh Govindan, Ethan

Katz-Bassett, Sanjay Rao, Jibin Zhan, and Hui Zhang. 2018. Understanding Video
Management Planes. In Proceedings of the Internet Measurement Conference 2018
(Boston, MA, USA) (IMC ’18). Association for Computing Machinery, New York,
NY, USA, 238–251. https://doi.org/10.1145/3278532.3278554

[2] Doreid Ammar, Thomas Begin, and Isabelle Guerin-Lassous. 2011. A New Tool
for Generating Realistic Internet Traffic in NS-3. In Proceedings of the 4th
International ICST Conference on Simulation Tools and Techniques (Barcelona,
Spain) (SIMUTools ’11). ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), Brussels, BEL, 81–83.

[3] Abdelhak Bentaleb, Bayan Taani, Ali C. Begen, Christian Timmerer, and Roger
Zimmermann. 2019. A Survey on Bitrate Adaptation Schemes for Streaming
Media Over HTTP. IEEE Communications Surveys Tutorials 21, 1 (2019), 562–585.
https://doi.org/10.1109/COMST.2018.2862938

[4] Mike Bishop. 2021. Hypertext Transfer Protocol Version 3 (HTTP/3).
Internet-Draft draft-ietf-quic-http-34. Internet Engineering Task Force.
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34 Work in Progress.

[5] Caddy. 2020. Caddy v2.1.1. https://caddyserver.com/
[6] Cisco. 2018. Cisco Visual Networking Index: Forecast and Trends, 2017–2022

White Paper. (27 Nov. 2018). https://web.archive.org/web/20200215211855/https:
//www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/white-paper-c11-741490.html

[7] Dailymotion. 2021. HLS.js v1.0.3. https://github.com/video-dev/hls.js

[8] DASH Industry Forum. 2021. dash.js JavaScript Reference Client v3.2.2.
https://reference.dashif.org/dash.js/

[9] Mojgan Ghasemi, Partha Kanuparthy, Ahmed Mansy, Theophilus Benson, and
Jennifer Rexford. 2016. Performance Characterization of a Commercial Video
Streaming Service. In Proceedings of the 2016 Internet Measurement Conference
(Santa Monica, California, USA) (IMC ’16). Association for Computing
Machinery, New York, NY, USA, 499–511.
https://doi.org/10.1145/2987443.2987481

[10] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multiplexed and
Secure Transport. RFC 9000. https://doi.org/10.17487/RFC9000

[11] Sina Keshvadi and Carey Williamson. 2021. An Empirical Measurement Study of
Free Live Streaming Services. In Passive and Active Measurement, Oliver
Hohlfeld, Andra Lutu, and Dave Levin (Eds.). Springer International Publishing,
Cham, 111–127. https://doi.org/10.1007/978-3-030-72582-2_7

[12] ESnet / Lawrence Berkeley National Laboratory. 2020. iperf3 v3.9.
https://software.es.net/iperf/

[13] Microsoft. 2021. Playwright v1.10.0. https://playwright.dev/
[14] Sandvine. 2020. The Global Internet Phenomena Report COVID-19 Spotlight. (7

May 2020). https://www.sandvine.com/phenomena
[15] Joel Sommers, Hyungsuk Kim, and Paul Barford. 2004. Harpoon: A Flow-Level

Traffic Generator for Router and Network Tests. SIGMETRICS Perform. Eval. Rev.
32, 1 (June 2004), 392. https://doi.org/10.1145/1012888.1005733

[16] Michele C. Weigle, Prashanth Adurthi, Félix Hernández-Campos, Kevin Jeffay,
and F. Donelson Smith. 2006. Tmix: A Tool for Generating Realistic TCP
Application Workloads in Ns-2. SIGCOMM Comput. Commun. Rev. 36, 3 (July
2006), 65–76. https://doi.org/10.1145/1140086.1140094

https://doi.org/10.1145/3278532.3278554
https://doi.org/10.1109/COMST.2018.2862938
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://caddyserver.com/
https://web.archive.org/web/20200215211855/https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://web.archive.org/web/20200215211855/https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://web.archive.org/web/20200215211855/https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://github.com/video-dev/hls.js
https://reference.dashif.org/dash.js/
https://doi.org/10.1145/2987443.2987481
https://doi.org/10.17487/RFC9000
https://doi.org/10.1007/978-3-030-72582-2_7
https://software.es.net/iperf/
https://playwright.dev/
https://www.sandvine.com/phenomena
https://doi.org/10.1145/1012888.1005733
https://doi.org/10.1145/1140086.1140094

	Abstract
	1 Introduction
	2 Reproducible Video Streaming Traffic Generators
	2.1 Using Representative Protocols
	2.2 Enabling Reproducible Experiments
	2.3 Implementation

	3 Experimentation
	3.1 Differences between Video Streaming Protocols
	3.2 Handling Multiple Client Generators
	3.3 Differences between HTTP Versions

	4 Future Work and Conclusion
	References

