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ABSTRACT
Cyberattacks are becoming increasingly diverse and serious. To
counter them, many organizations run multiple appliances, rather
than a singular appliance, because their standard is that there should
never be an undetected threat. Although applying those various
security appliances has increased organizations’ security, their se-
curity operations are experiencing alert fatigue, possibly causing
incidents due to missing critical threat information or human error.
In this research, we investigated how much of the alerts issued
by different security devices installed on the same network can be
considered duplicates or unique. We obtained the alert data for an
organization with multiple appliances for a period of 10 months
and extracted all the sets of alerts that could be inferred to refer
to the same event to analyze the extent to which the alert types
that they generate co-occur across the appliances. According to
the analysis of the similarity between alert types based on their
co-occurrence, we mapped the alert types in 2 dimensions to dis-
cuss the appliances’ correlation. We observed that some appliances
completely overlap with the alerting behaviors of other appliances
and identified appliances that produce many useful alerts with high
uniqueness.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation.
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security appliance, alert fatigue, co-occurrence analysis
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1 INTRODUCTION
Cyberattacks have become increasingly diverse. Accordingly, many
organizations had to implement countermeasures [13], for example,
installing and operating a security appliance.

Security appliances initially offered a single function such as a
firewall, an intrusion detection system (IDS) or antimalware as a
response to various threats. The methods, routes, and causes of
attacks (e.g., malware) are becoming increasingly complicated, and
responding to threats by using single-function defense tools has
become impossible. To manage these threats in a 1-step, unified
threat management (UTM) [20], a system that detects and responds
to various threats with a single unit, is being provided by some
developers. Security appliances including those UTMs are being
deployed in every organization. Additionally, tools that collect logs
of events and analyze those logs in real time, such as security
information and event management (SIEM) [2], are now being
applied.

However, because of many organizations’ concern that there
should never be an undetected threat, they run multiple appliances,
and the more mission-critical the systems that the organization
operates, the more likely it is to engage in that practice.

The appliances output many alerts daily, including relatively
unproblematic alerts. As a fact, a single alert may save the organiza-
tion, for example in context of APTs. Thus, it may not necessarily to
be pessimistic in the face of a massive number of alerts. However, it
is also a fact that a limited number of security operations staff check
those alerts daily to assess whether countermeasures are required.
The amount of alerts is not always proportional to the number of
security operations staff. Although the application of those vari-
ous security appliances has increased organizations’ security level,
their security operations are experiencing alert fatigue [8]. The
limited information processing capacity of the security operations
staff creates a bottleneck that negatively affects the accuracy and
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efficiency of security measures [12]. Many operations staffs are
exhausted, increasing the probability of incidents due to missing
critical threat information or human error. This problem should be
solved.

To address the problem, we investigated how much of the alerts
issued by different security devices installed on the same network
can be considered duplicates and how much of the alerts can be
considered unique. We collected data in the actual network environ-
ment used in the business and analyzed howmany competing alerts
were issued by security appliances. We 1) obtained for 10 months
all the alert data for an organization with multiple appliances, 2)
extracted all the sets of alerts that can be inferred to refer to the
same event, and 3) analyzed the extent to which the alert types that
they generate co-occur across the appliances. According to the sim-
ilarity between alert types on the basis of their co-occurrence, we
mapped the alert types in 2 dimensions. As a result of the mapping,
several clusters formed. Analysis of these clusters revealed that
some appliances completely overlapped with the alerting behav-
iors of other appliances. We also identified appliances that produce
many useful alerts with high uniqueness.

According to our review of the literature, this research is the
first to comparatively analyze long-term alert data from multiple
appliances installed in a real network.

The main findings of this paper are as follows:
• Alert behaviors of one appliance may completely overlap
with behaviors of other appliances.

• On the other hands, one appliance may produce many useful
alerts with high uniqueness.

These findings imply that if security analysts eliminate the ap-
pliances that do not provide useful information from the group of
complementary appliances, the alert processing cost can be reduced
and the operation system improved such that additional resources
can be spent on appliances with high reliability.

2 DATASET
2.1 Alert data collection method
We collected alert data issued by 14 security appliances (appliane ID:
A-N). Those alert data were anonymized to protect the privacy of
the network users. The appliances with UTM listed in the function
have more than 1 function in web filtering, antimalware, antispam
mail, function of IDS/intrusion prevention system (IPS), advanced
persistent threat (APT) measures, and firewall. 9 appliances (appli-
ance A, B, F, H, I, J, L, M and N) are UTM. 2 appliances (appliance
C and G) are IDS/IPS. Appliance D is an APT measure. Appliance
E is an anti-malware. Appliance K is an antispam mail. All the
appliances are commercial.

All the aforementioned security appliances were installed into
a network of a research institute (the name is blinded for review),
to protect the network from unwanted traffic. The network traffic
monitored by each appliance is the same. By performing multiple
checks on the same traffic in this way, the research institute tried
to ensure the detection of incidents and their signs.

The network in which the appliances were installed was assigned
a /16 IPv4 global IP address range. More than 1,000 staff members
used this network to communicate with external organizations, use
external services, and communicate research data.

We collected all the alerts issued by the 14 appliances for 10
months: between Jan 1 and Oct 31, 2017 (304 days). As for Ap-
pliances F and H, since those tend to generate a large amount of
alerts for minor problems, we set thresholds regarding the level of
importance contained in the alerts and excluded minor alerts from
the collection. All alerts were aggregated from the appliances and
logged on a single server in real time. A total of 137,699,151 alerts
were collected.

2.2 Data Field of Alert Data
The structure of the collected alert data is all different for each
security appliance.We extracted the following attribute information
from all alert data.

Time Date and time when the alert was issued.
Appliance ID ID of the security appliance that issued the alert.
Source IP IPv4 address that sent the communication that the

alert was issued.
Destination IP IPv4 address that received the communication

that the alert was issued.
Alert type Content of the alert issued by the appliance.

Each attribute’s information comprises 1 value, and never more
than 1 value in 1 attribute. For the "Time," because time information
did not exist in the alert data issued by the appliance in some cases,
we used the system time of the server to aggregate and record alerts
for all appliances. "source IP" or "destination IP" sometimes had
no value, depending on the content of the alert; in such cases, it
was recorded as "na" (not available). The content ("alert type") is
expressed in words or sentences. There are some limited patterns
of content for each appliance. The diversity of the content varies by
appliance. Some appliances present a wide variety of alert content
to the user, such as referring to the name of the application layer
service to indicate the specific type of threat (e.g., "telnet: multiple
vendors bsd telnetd encryption key..."); other appliances only convey
that the communication is potentially dangerous (e.g., "threat").
Content that differs by at least 1 character is treated as a different
alert type.

2.3 Aggregate of Alert Data
Table 1 provides the number of alerts issued by each appliance and
the number of alert types.

Of the appliances, B, C, F, G, and I issued the most alerts. Appli-
ances such as A and L had among the least alerts. Variety in the
number of alert types and the frequency was observed. Appliance
G issued many alerts of many types; by contrast, appliance F issued
many alerts of 1 type.

The frequency of alert issuance for all 1,451 alert categories
had a mean of 94,900, a median of 30, a maximum of 55,349,924, a
minimum of 1, and a sample standard deviation of 1,546,782. Thus,
the distribution had a large frequency spread between the high and
low frequency alerts. Table 2 shows frequency distribution of the
issued times for the 1,451 alert types. A wide variety of very low
and high frequency alert types was observed.
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Table 1: Breakdown of all alert data

Appliance ID Amount of alerts Number of types
A 469 1
B 11,857,488 168
C 66,212,482 437
D 564,561 6
E 6,498 4
F 15,793,731 1
G 36,676,039 811
H 7,253 3
I 6,106,558 11
J 296,972 4
K 89,137 1
L 24 1
M 52,696 2
N 35,243 1

Total 137,699,151 1,451

3 ANALYSIS
3.1 Preliminary Analysis: Extraction of

Reminding Alert
In general, most appliances continued issuing other alerts with the
same content, unless the problem that triggered the alert was ad-
dressed and resolved. The alerts not triggered by an event that first
occurred at the time had to be excluded from the co-occurrence anal-
ysis of alerts. Because if we counted these alerts in the co-occurrence
analysis, co-occurrences of past events would be counted, and the
results would not accurately reflect the actual co-occurrence. We
referred to these alerts as "reminding alerts" and extracted them in
advance to exclude them from co-occurrence analysis.

No data were available to verify which alerts were reminding
alerts. However, reminding alerts existed in the alert group in which
each alert was issued from the same appliance on the same source
IP and destination IP. In addition, we assumed that reminder alerts
tend to be set to continue issuing at a certain interval determined
for each appliance and alert type. Therefore, the reminding alerts
were estimated based on the intervals between alerts.

We extracted alert groups in which all alerts were the same alert
type that occurred for the same source IP and destination IP, for each
appliance. The alert groups were extracted in 9 appliances. No alert
groups were extracted in the remaining 5 appliances (appliances J,
K, L, M, and N). We sorted each alert in the alert groups by time
value in the alert data in ascending order. Based on the estimation
that a reminding alert would probably not be issued more than 1
day later, if there was a time interval of more than 1 day within an
alert group, we split the group at that point and divided it into 2
alert groups. We observed interval times between the alerts in the
split alert groups.

Figure 1 presented histograms of interval times between the
alerts. The histograms for 9 appliances are aligned vertically. Three
histograms in a different time window are aligned horizontally for
each appliance. From left to right, each histogram demonstrates 1)
the frequency distribution of the interval between 0 and 60 seconds,
counted in 1-second increments; 2) the interval between 0 and
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Figure 1: Histograms of Interval Time between Alerts

60 minutes, counted in 1-minute increments; and 3) the interval
between 0 and 24 hours, counted in 1-hour increments. The vertical
axis in each histogram that presents the frequency of the interval
time is represented by a logarithmic scale.

Most appliances had multiple spike points in the histogram in
seconds or minutes. Few appliances had spike points in the his-
togram in hours. The spike points were considered to represent
the time preset as the elapsed time at which the appliance issued a
reminding alert. Because if an interval time of reminding alert was
fixed, frequency of the time should be discriminately more than
that of the other interval times. However, because of the errors in
the timing of issuing the alert, the interval times of the reminding
alert may be included in the class around the spike point. In addi-
tion, depending on the alert type, because the interval settings for
reminding alerts might differ for the same appliance, clear spike
points might not be observed. Therefore, we used the maximum
of the clearly observed spike points (fixed interval values for re-
minding alerts), and for the intervals below the maximum value,
we approximately determined that the alert after that interval was
a reminding alert. Specifically, alerts issued with the same alert
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Table 2: Frequency distribution of the issued times for each alert type

Range 100 ≤ n < 101 101 ≤ n < 102 102 ≤ n < 103 103 ≤ n < 104 104 ≤ n

Number of
Alert types

549 344 228 145 185

type for the same source IP and same destination IP after an in-
terval smaller than the threshold time shown in the table 3 were
determined to be reminding alerts.

When we extracted the alerts using the condition, the number of
alerts presented in table 4 were determined to be reminding alerts.
Appliances for which alerts issued with the same alert type for
the same source IP and same destination IP were not detected, we
assumed that no reminding alert was issued.

3.2 Co-occurrence Analysis
We analyzed how many of the observed alerts were issued for the
same event, by alert type. We captured events that occur for which
an alert of 1 alert type co-occurs with an alert of another alert
type and determined the similarity between the alert types in a
round-robin, based on the frequency of co-occurrences. Specifically,
we extracted alert pairs that occurred within a certain time interval
and had the same set of source IP and destination IP and counted
the number of co-occurrences per alert type. On the basis of the
number of co-occurrences among all alert types, a similarity matrix
among alert types was created, and the matrix was converted into
a two-dimensional map by a dimensionality reduction algorithm.
The two-dimensional map was used as the object of discussion.

To create the two-dimensional map, we performed a procedure to
count the number of co-occurrences between the alert types issued
by each appliance and visualize the similarity between alert types,
according to the following steps "preprocessing" and "proposed
method".

3.2.1 Preprocessing.

(1) Collect all the alerts issued by the 14 appliances during the
304 days.

(2) Extract reminding alerts from the collected alerts by using
the method presented in chapter 3.1.

(3) Exclude all extracted reminding alerts from the entire col-
lected alerts.

(4) Exclude alerts where the source IP or destination IP is "na"
(not available) from the entire collected alerts.

(5) Divide all alerts into alert sets in which the alerts’ issue time,
source IP, and destination IP match.

3.2.2 Proposed method.

(1) Define a time window for all 10 seconds in the observa-
tion period (304 days), by shifting the starting point of the
window by 1 second from the beginning of the observation
period.

(2) Merge alert sets with the same source IP and the same desti-
nation IP within the duration for each time window. Discard
merged alert sets with only 1 alert.

(3) Extract alert pairs for all combinations in themerged alert set.
Consider the extracted pair of alerts to have co-occurred. Add

1 to the number of co-occurrences of the alert type in both
alerts each time 1 alert pair co-occurrence is detected. Record
the IDs of the alert pair, to control and prevent duplicate
retrieval in subsequent attempts.

(4) Calculate the similarity in a round-robin between all alert
types and create a matrix: the matrix represents all alert
types in both rows and columns, and the component (i, j)
represents the similarity between alert type i and alert type
j. Calculate a Jaccard coefficient [9] to assess the similarity
between alert types: let X be the set of alerts that are of alert
type i and Y be the set of alerts that are of alert type j, the
Jaccard coefficient between set X and set Y is provided by
the equation (1).

|X ∩ Y |

|X ∪ Y |
(1)

For example, the Jaccard coefficient between alert type i and
alert type j was obtained by dividing the number of times
the alerts of i and j co-occurred by the number of times the
alerts of i or j occurred.

(5) Convert the matrix into a two-dimensional map by a di-
mensionality reduction algorithm. We applied the t-SNE
(t-Distributed Stochastic Neighbor Embedding) algorithm
[22] to the dimensionality reduction.

In this manner, using the alert dataset as input, we obtained a
two-dimensional scatter plot representing the relative positional
relationships of alert types based on the similarity between the
alert types for each appliance.

Additionally, 18,043,333 alerts in the observed data contained
"na" in the IP address information and were thus excluded in step 4.

4 DISCUSSION
The co-occurrence analysis resulted in the two-dimensional map
(scatter plot) of the relative positions between alert types presented
in figure 2.

Eachmarker in the scatter plot represents an alert type. The color
of the markers represents the appliance to which the alert type
belongs. The size of the markers represents the frequency of the
alert type issued. The diameter of the marker is proportional to the
normal logarithm of the frequency. When the result of calculating
the normal logarithm was below 1, we set the same diameter as
when the result was 1, for visibility. The scale of the coordinates is
determined by the results of the t-SNE calculation. The unit of the
marker diameter is independed to the scale of the coordinates. The
dashed circle in figure 2 indicates the boundary between alert types
that appears to be cohesive and a group of alert types are distant
from other alert types. We referred to the alert types outside the
boundary as "isolated alert types." The dashed circle that represents
the boundary was drawn at the discretion of the authors.

There is a concentration of markers in the center of the right half
of the figure 2, and in the same figure, several clusters of particularly
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Table 3: Threshold for Interval Time to Determine Reminding Alert

Appliance ID A B C D E F G H I
Threshold Time 0s 55m 15m 30m 30m 15h 30m 21s 30m

Table 4: Number of Extracted Reminding Alerts

Appliance ID A B C D E F G H I
# of Reminding Alert 66 1,215,712 1,646,873 7,871 109 1,314,600 3,492,486 3,242 4,749,620

Figure 2: Relative Positional Relationships of alert types

aggregated markers around the rectangular are from [-20,-20] to
[20, 20]. Figure 3 presents the enlarged view around the area.

According to figure 3, we identified 7 clusters. We referred to the
clusters as "Cluster_1, 2a, 2b, 3, 4, 5, 6 and 7" for each, as presented
as the dashed circles in figure 3. The alert types contained in the 7
clusters were highly cohesive. The inclusion of an alert type in these
clusters might indicate that the alert type had an especially high
probability of responding to the same event as the other alert types
in the cluster. In other words, for pairs of alert types with different
marker colors in the cluster, the appliance tended to issue alerts
that duplicated those of the other appliance. A pair of alert types
that had the same marker color in the cluster indicated that for a
single event, there was a situation for which the same appliance
issued multiple alerts with different content related to the event;
alternatively, it indicated that for 1 event, there was often an event
that was likely to occur in conjunction with it.

4.1 Analysis of Clusters
We observed the alert types within the 7 identified clusters. The
number of alert types in the clusters for each appliance is presented

1

3

2a
2b

4

5 6

Figure 3: Relative Positional Relationships of Alert Types:
Enlarged View around the Clusters

Table 5: Breakdown of Clusters

Cluster
ID

A B C D E F G H I J K L M N Total Number of
Included alert types

1 0 22 58 0 0 0 48 0 0 0 0 0 0 0 128
2a 0 14 41 0 1 0 46 0 0 0 0 0 0 0 102
2b 0 13 33 0 1 0 48 2 0 0 0 0 0 0 97
3 0 10 32 2 0 0 75 0 0 1 1 0 0 0 121
4 0 24 43 1 1 0 56 0 0 0 0 1 2 1 129
5 0 4 37 0 0 0 46 0 1 1 0 0 0 0 89
6 0 10 48 0 0 0 47 0 0 1 0 0 0 0 106

in table 5, and many of the alert types of appliances B, C, and G
are included in the clusters. However, because all 3 appliances have
relatively more alerts than the others do in the number of alert
types and the number of alerts issued, the 3 appliances probably do
not have characteristics that would make them tend to duplicate
the alerts issued by other appliances.

To analyze which appliances issued alert types that would prob-
ably overlap with other appliances, we used the formula (2) to
determine how many of the total alert types for that appliance
would probably be duplicated by other appliances. The value from
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the formula 2 represented how likely the type of alert issued by
appliance m was to be encompassed by the behavior of another
specific appliance n.

InclusionRate(m,n) =

∑
c ∈Clusters n

m
c ∗ bnc

Nm
(2)

In equation (2), Nm is a total number of alert types by appliance
m, nmc is a number of alert types by appliancem in a cluster c , and
bnc is an existence of alert type by appliance n in cluster c . When
there is 1 or more alert type by appliance n in cluster c , the bnc will
be "1," and "0" otherwise.

Table 6 presents the result of the inclusion rate calculation. Ac-
cording to table 6, appliances K, L, M, and N had the inclusion rate
of 1.00 to some other appliances. These appliances were completely
covered by other appliances in terms of the alerts they issued and
do not need to be added in an environment in which particular
appliances are applied to. For appliances B, C, D, and E, more than
half of the alert types were encompassed in the other particular
appliance. Depending on the purpose for which the appliance is
being applied, the choice of not deploying it may be considered.
Additionally, appliances A, F, and I were independent of other ap-
pliances because their inclusion rates were 0.00 for the most part,
namely, appliances F and I issued many alerts, according to table 1,
and in terms of the coverage of events that occur in network, those
appliances are worth keeping in the environment.

We analyzed what type of set of alerts each of the clusters that
were formed was, to understand what topics of events for which
duplicate alerts would probably be issued. We considered the set
of alert content in the alert types for each cluster to be a single
document, calculated the TF-IDF values [15][10] of the occurring
words, and listed the words with TF-IDF values up to the top 10 in
table 7. To calculate TF-IDF, we used the functions contained in the
python Scikit-learn library [17]. The max_df value was set to 0.9.
Symbols () :′ ” in the alert type were deleted. Spaces, hyphen, and
underscore were used as delimiters of words.

Cluster_1 seems to indicate the detection of outbound commu-
nication with CNC servers by trojan-type malware on Windows
platforms. Cluster_2a seems to indicate the detection of a poten-
tially unwanted application of the adware-type targeting Windows.
In cluster_2b, alerts on integer overflow in web-browsing images or
graphics seem to be featured; however, overall, there is a complex
of alerts for various categories of web browsing. Both clusters_2a
and _2b can be considered the set of alerts related to web browsing.
We assumed is this finding is why both clusters are mapped close
to each other. The cluster_3 seems to be a set of alerts issued in
conjunction with or related to a port scan by a bot. The alert types
in cluster _4 seem to be related to trojan emails. Cluster _5 appears
to be a set of alerts for a vulnerability related to loading dynamic
link libraries; however, it is a complex cluster that includes alert
types unrelated to that. Cluster_6 is considered to be a set of alerts
related to SQL injection.

4.2 Isolated Alert Types
Because the isolated alert types were rarely simultaneously issued
with alerts from other alert types, those are highly unique and
relatively valuable. However, this alert type could also be an alert

type that tends to be issued at a time different from the time of
issuance of other appliances, due to false event detection.

The isolated alert type comprised 47 types: 9 for appliance B, 5 for
C, 27 for G, and 6 for I. Many of the types belonged to appliance G.
An infrequent alert type tended to be an isolated alert type because
it was issued less frequently than the other types and had a lower
probability than the other types of being issued simultaneously
with other alerts. Notably, frequently issued isolated alert types
may be highly unique alerts if the contents differ from that of alert
types in the clusters; otherwise, false event detection may occur.

According to the frequency of the 47 issued alert types, those
with a high frequency, namely, over 100,000 times, were the 3 types
issued by appliance G: 1) alert for invalid DNS flows, 2) alert that the
data field of the NTP control message is too long, and 3) notification
of a handshake with a transferring BitTorrent file. These 3 alert
types differ from those in the clusters, and depending on the trend
of the attack, they may occur more frequently at times. At least
those 3 types seemed not to be alerts by false event detection, and
they are sufficiently useful.

5 RELATEDWORK
Many studies have assessed computer network protection tech-
niques to evaluate the performance of individual techniques. A
particular area of study for research institutes has been evaluating
IDS systems. In paper [1], the author tested and analyzed the per-
formance of the IDS systems Snort [18] and Suricata [6], general
open source IDS systems. In paper [21], the author investigated
the performance and detection accuracy of Snort, Suricata, and Bro
[16] and IDS systems, using various attack types, including DoS
attacks, DNS attacks, FTP attacks, scan port attacks, and SNMP
attacks. The author found that the detection accuracy decreases
under certain conditions. In paper [23], the author stated that the
intrusion detection methods proposed in the literature have not
been reliably evaluated for real-world use. According to that state-
ment, the author proposed a new evaluation method for the field of
machine learning intrusion detection. Studies have also evaluated
other protection functions. In paper [19], the author reviewed the
datasets to test existing automated APT detection methods. In pa-
per [3], the author reviewed of content-based e-mail spam filtering
techniques.

There are some studies that compare appliances across the board
and examine how they work. In paper [4], the author evaluated the
services of two commercial threat intelligences as to what these
services consist and compare their metrics, and compared with
four large open threat intelligence feeds. In paper [7], the author
assessed the quality of 17 open source cyber threat intelligence feeds
for over a year. In paper [14], the author defined a set of metrics to
characterize threat intelligence data feeds and characterize public
and commercial sources. In paper [5], in order to know if a security
appliance is what cybersecurity analysts should install and if it is
necessary for their network before they install it, using data from
the Managed Security Service Providers (MSSP) data, the author
developed a virtual security appliance in an attempt to predict
incidents that would have been detected if the appliance had been
present. In paper [11], the author tried to enable the aggregation of
related alerts generated by a single security appliance.



On-premises Analysis of Advanced Threat Prevention Appliances CSET ’21, August 9, 2021, Virtual, CA, USA

Table 6: Inclusion Rate of Alert Types

A B C D E F G H I J K L M N
A - .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
B .00 - .58 .20 .30 .00 .58 .08 .02 .14 .06 .14 .14 .14
C .00 .67 - .17 .27 .00 .67 .08 .08 .27 .07 .10 .10 .10
D .00 .50 .50 - .17 .00 .50 .00 .00 .33 .33 .17 .17 .17
E .00 .75 .75 .25 - .00 .75 .25 .00 .00 .00 .25 .25 .25
F .00 .00 .00 .00 .00 - .00 .00 .00 .00 .00 .00 .00 .00
G .00 .45 .45 .16 .18 .00 - .06 .06 .21 .09 .07 .07 .07
H .00 .67 .67 .00 .67 .00 .67 - .00 .00 .00 .00 .00 .00
I .00 .09 .09 .00 .00 .00 .09 .00 - .09 .00 .00 .00 .00
J .00 .75 .75 .25 .00 .00 .75 .00 .25 - .25 .00 .00 .00
K .00 1.00 1.00 1.00 .00 .00 1.00 .00 .00 1.00 - .00 .00 .00
L .00 1.00 1.00 1.00 1.00 .00 1.00 .00 .00 .00 .00 - 1.00 1.00
M .00 1.00 1.00 1.00 1.00 .00 1.00 .00 .00 .00 .00 1.00 - 1.00
N .00 1.00 1.00 1.00 1.00 .00 1.00 .00 .00 .00 .00 1.00 1.00 -

Table 7: Top 10 characteristic words in each cluster (TF-IDF value)

Cluster ID Words
1 cnc(.24) trojan(.24) win(.19) excel(.17) outbound(.17)

known(.15) snmp(.13) blacklist(.13) assertion(.11) failure(.11)
2a response(.16) pua(.16) executable(.13) known(.13) win(.13)

adware(.12) ms(.12) mytransitguide(.11) sandbox(.11) activex(.11)
2b firefox(.15) integer(.14) archive(.12) too(.12) jpeg(.12)

kerberos(.12) script(.12) self(.12) signed(.12) technology(.12)
3 portscan(.27) invalid(.19) smtp(.19) flow(.18) tcp(.17)

bot(.15) long(.14) confidence(.13) high(.13) portmapper(.13)
4 email(.30) mal(.22) trojan(.20) database(.19) cnc(.18)

smtp(.18) reputation(.15) dangerous(.15) domain(.14) win(.12)
5 dll(.17) download(.14) os(.14) trojan(.13) iax2(.12)

option(.12) peer(.12) potentially(.12) rtsp(.12) vlc(.12)
6 sql(.20) download(.17) 2017(.15) get(.13) rdp(.13)

rtf(.13) wordpress(.13) generic(.12) init(.11) method(.11) netcat(.11)

However, despite such studies that evaluate the detection per-
formance of individual functions in isolation or some threat intelli-
gences (security appliances), our research is the first to obtain and
analyze actual operational data on the synergistic effect and the
redundancy when multiple appliances are configured simultane-
ously.

6 ETHICAL CONSIDERATION
The data obtained in this study were the log of alerts from secu-
rity appliances installed in a network actually used for business
purposes. All the data were not fictitious but were alerts issued for
communications made by a specific person or for the configuration
of a device actually in operation. It is inappropriate for analysts
to be able to identify communications made by individuals (e.g.,
source address/destination address/content of communication) or
which device was actually the target of the alert, by analyzing the
data. Therefore, in our research, the source IP and destination IP
of each alert data included in the data to be handled were hashed
respectively in advance so that the actual IP address could not be

identified by the analyst. In addition, to ensure that only analysts
could view the alert data, the data was recorded on a server placed
in a physically locked room, and a permission setting and authenti-
cation process was established to ensure that only analysts could
access the data.

7 CONCLUSION
In this paper, we introduced the results of the investigation how
much of the alerts issued by different security devices installed
on the same network can be considered duplicates or unique. We
obtained the alert data for an organization with multiple appliances
for a period of 10 months and extracted all the sets of alerts that
could be inferred to refer to the same event to analyze the extent
to which the alert types they generated co-occurred across the
appliances. According to the analysis of the similarity between
alert types on the basis of their co-occurrence, we mapped the alert
types in 2 dimensions to discuss the appliances’ correlation.
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In conclusion, we demonstrated that some appliances completely
overlap with the alerting behaviors of other appliances and identi-
fied appliances that produce many useful alerts with high unique-
ness. Further experiments are required to examine that by dropping
the operation of those overlapping appliances and devoting re-
sources to useful appliances, the network will continue to be secure,
and the load on security operators will be reduced.
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