
D2U: Data Driven User Emulation for the Enhancement
of Cyber Testing, Training, and Data Set Generation
Sean Oesch

Oak Ridge National Laboratory
Oak Ridge, TN, USA
oeschts@ornl.gov

Robert Bridges
Oak Ridge National Laboratory

Oak Ridge, TN, USA
bridgesra@ornl.gov

Miki Verma
Stanford University
Palo Alto, CA, USA

meverma@stanford.edu

Brian Weber
Oak Ridge National Laboratory

Oak Ridge, TN, USA
weberb@ornl.gov

Oumar Diallo
Oak Ridge National Laboratory

Oak Ridge, TN, USA
omdiallo@gmail.com

ABSTRACT
Whether testing intrusion detection systems, conducting training
exercises, or creating data sets to be used by the broader cybersecu-
rity community, realistic user behavior is a critical component of a
cyber range. Existing methods either rely on network level data or
replay recorded user actions to approximate real users in a network.
Our work produces generative models trained on actual user data
(sequences of application usage) collected from endpoints. Once
trained to the user’s behavioral data, these models can generate
novel sequences of actions from the same distribution as the train-
ing data. These sequences of actions are then fed to our custom
software via configuration files, which replicate those behaviors
on end devices. Notably, our models are platform agnostic and
could generate behavior data for any emulation software package.
In this paper we present our model generation process, software
architecture, and an investigation of the fidelity of our models.
Specifically, we consider two different representations of the be-
havioral sequences, on which three standard generative models
for sequential data—Markov Chain, Hidden Markov Model, and
Random Surfer—are employed. Additionally, we examine adding a
latent variable to faithfully capture time-of-day trends. Best results
are observed when sampling a unique next behavior (regardless
of the specific sequential model used) and the duration to take the
behavior, paired with the temporal latent variable. Our software is
currently deployed in a cyber range to help evaluate the efficacy of
defensive cyber technologies, and we suggest additional ways that
the cyber community as a whole can benefit from more realistic
user behavior emulation.

KEYWORDS
data sets, experimental infrastructure, user emulation, data driven

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
CSET’21, August 09, 2021, Virtual
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9065-1/21/08. . . $15.00
https://doi.org/10.1145/3474718.3475718

ACM Reference Format:
Sean Oesch, Robert Bridges, Miki Verma, Brian Weber, and Oumar Diallo.
2021. D2U: Data Driven User Emulation for the Enhancement of Cyber Test-
ing, Training, and Data Set Generation. In Cyber Security Experimentation
and Test Workshop (CSET ’21), August 9, 2021, Virtual, CA, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3474718.3475718

1 INTRODUCTION
In 2015, the National Science Foundation released a report enti-
tled Cybersecurity Experimentation of the Future: Catalyzing a
New Generation of Experimental Cybersecurity Research (CEF) 1,
which laid out a roadmap of the infrastructure needed to support
cyber research. The CEF highlights the need for better techniques
to "instrument and observe the behavior of real humans and to au-
tomatically extract valid behavior models, and then inject into test
environments". While the CEF mentions several existing emulation
technologies, including LARIAT [17] and KOALA [3] from MIT
Lincoln Laboratory, and the DETER Agents Simulating Humans
(DASH) [21] project from USC-ISI, it also emphasizes the need for
further research in modeling human behaviors.

In addition, the problem of generating realistic data for use in
cyber testing and training is well established in the literature [1,
18]. Many existing datasets cannot be properly validated and are
outdated [1, 14, 22]. A critical step towards more realistic cyber
data for training and testing is high fidelity user emulation [5].

In this paper we present D2U, a novel user behavior emulation
technology that collects, models, and performs realistic user be-
haviors in cyber testbeds, aligning with the goals of the CEF and
providing much needed data for cyber experimentation. D2U does
more than replay previously-observed behavior or string together
patterns of actions based on heuristics, and it does not rely on agent-
based modeling approaches. Instead, D2U provides the ability to
generate unlimited, stochastic but realistic sequences of behavior
based on data collected on individual users; then D2U orchestrates
a plethora of virtual machines to enact these behaviors, thereby
emulating a network of users.

In a one-time training phase D2U collects application (app) usage
data on a real computer user and creates probabilistic generative
models of that user’s unique patterns of behaviors. These models
enable the production of new sequences that appear similar to the

1https://cef.cyberexperimentation.org/

https://doi.org/10.1145/3474718.3475718
https://doi.org/10.1145/3474718.3475718
https://cef.cyberexperimentation.org/

CSET’21, August 09, 2021, Virtual Sean Oesch, Robert Bridges, Miki Verma, Brian Weber, and Oumar Diallo

real user’s behavior. D2U calls sequence-visualization software, al-
lowing quality analysis to gauge realism of the generated behaviors.
Next, user behavior, as generated by our models, is fed into custom
software that is able to actuate those behaviors on real or virtual
devices—a “digital twin” of the user on that device.

By placing these twins on many devices on the network, D2U
helps address a variety of problematic use cases, including: (1)
generating realistic host and network data for testing cyber tools
(e.g., needed to evaluate emerging cybersecurity technologies, such
as User Behavior Analytics (UEBA), Anomaly Detection (AD), and
Intrusion Detection System (IDS) technologies), (2) creating cyber
deception technologies (e.g., camouflaging real users/traffic with
realistic emulated versions), (3) creating training data for machine-
learning-based IT and cyber tools, (4) enhancing the realism of
cyber exercises (e.g., red-team events for testing and practicing
network defense), and (5) generating novel datasets to support
both research and industry. D2U is currently running in a cyber
testbed with over 300 active emulated users at [redacted] to support
large-scale experiments involving defensive cyber technologies.

This preliminary work provides a qualitative evaluation of our
models based on 42 days of application sequence data collected on
one of the paper authors (Sec. 2), as well as describing the software
architecture we use to deploy D2U in our cyber range (Sec. 3).
Specifically, we consider two dichotomies in our approach: Firstly
the choice of representing sequential data with repeated symbols
(STS) or unique symbols paired with their duration (DSSDS—Sec.
2.3.1). Secondly, the structural modeling choice of using the original
sequences (Flat) vs. adding a latent layer to model time-of-day
trends (Hierarchical—Sec. 2.3.2). As both require a generative model
for sequential data, we employ three standard approaches: Markov
Chain, Hidden Markov Model, and Random Surfer (Sec. 2.3.3). We
find that, regardless of the sequential model used, DSSDS best
replicates realistic “spell lengths”, the duration one resides in the
current behavior, and the Hierarchical model best captures temporal
trends.

The application sequence data used to train our model, as well as
model output and sample configuration files, are available at https:
//github.com/oeschsec/D2U-artifacts. While we are not planning to
make the modeling code publicly available to keep our options open
for future usage, replication of models/results could be attained by
the modeling details enclosed.

2 MODELING APP USAGE SEQUENCES
To create a data-driven model of a user’s behavior, data recording
the user’s activity is collected from the user’s host for an ample
period of time (many days to weeks). The data is used to train a
generative model, that is, an algorithm that, once trained, can be
used to produce novel sequences of activities that mimic the input
data’s qualities. This section details the data collection and prepro-
cessing, then introduces the generative models tested alongside
sequential qualities of the data from previous research that drive
evaluation and model selection.

2.1 Data Collection & Preprocessing
A collection script was written which records a timestamped obser-
vation each 0.5s of the user’s “active application”, i.e., the frontmost

application in the operating system’s (OS’s) user interface (UI). This
script was deployed on the work computer of two of the paper au-
thors, one of whom provided the data used in our analysis. For this
participant, we collected 42 days of sequential data over the course
of ∼ 2 months. Figure 1 provides a summary of the applications
used by the participant during a ten day span within the collection
period.

Our collection script, written in Python, leverages the AppKit2
package for Mac OS data collection, which is used in this paper,
although we created analogous collection scripts for Linux and
Windows OSes from a variety of Python modules. The program
was designed to collect data continuously for eight active hours (not
including sleep periods where logging was automatically paused).
Notably, the program recorded loginwindow as the app name be-
fore the computer would sleep/pause logging, which allows our
models to generate realistic pauses in the user’s day. When a col-
lection period was complete, participants were instructed to restart
the data collection program.

Each run of the collection program provides a time series of
active app observations: (s ′(t0), . . . , s ′(tL)), where tk+1 = tk+ 0.5s
for most k , and L = 8hrs ×602s/hr ×2 = 57.6K observations. Note,
we use s ′ to denote the raw sequence reserving the simple notation
s for it’s analogous sequence of apps after preprocessing. Once we
have obtained a sufficient number of observation sequences from a
user, we normalize our data to have the following properties:

• A single sequence per day, filtering out days in which there
was insufficient active data (e.g. user was logged out). When
denoting the sequence for a particular day is needed, we let
si denote the sequence for the i-th day.

• A uniform start and end time (this depends on the user),
which we define as simply the minimum start time (mins ′ t0)
and maximum end time (maxs ′ tL) observed.

• Uniform and uniformly spaced timestamps in each day’s
sequence (i.e., all s are sequences with the same time stamps),
coarsened to five second intervals. To do this we simply set
s(t) to be the closest previous observation—set s(t) := s ′(tk)
where t ∈ (tk , tk+1)—provided we have observations s ′ near
time t . In the alternative case, where there is a large gap in a
day’s data collection (e.g., from the collection script ending
but not being restarted quickly) we copy subsequences of
s ′ occurring before and after the gap to fill in the unknown
portion, then define s(t) as just previously mentioned.

• We replace seldomly used apps—defined as apps that occur
in only a single collection period or that make up less than 1%
of the data—with a distinguished symbol, RARE, effectively
binning all infrequent observations.

Now armed with uniform sequences of user behavior for many
days, we consider the sequential properties and models that may
faithfully reproduce those properties.

Before proceeding we note that Figures 1, 2, 3, and in Table 3
leverage the R package of Gabadinho et al. [6].

2.2 Sequential Concepts and Modeling
We seek models that are “high-fidelity”, where we define the fi-
delity of a user model in terms of the similarity of the activity
2https://developer.apple.com/documentation/appkit

https://github.com/oeschsec/D2U-artifacts
https://github.com/oeschsec/D2U-artifacts
https://developer.apple.com/documentation/appkit

D2U: Data Driven User Emulation CSET’21, August 09, 2021, Virtual

sequences the model generates to that of the true user sequences;
consequently, gauging how “good” a model is depends solely on
defining similarity of two sequences. Yet, finding an adequate set
of similarity metrics for capturing the characteristics in real data
is difficult to do. Sequential data appears in a wide variety of do-
mains. Hence, a wide variety of similarity measures for sequences
exist; e.g., string metrics such as Hamming for binary data [9], edit
distances (e.g., Levenshtein) often used for text applications [8], or
Kendall-Tau distance often used for ranking comparisons [10], to
name a few. Studer & Ritschard [19] provide a thorough survey.

Considering Figure 1, which visualizes ten days (sequences) of
a user’s application usage, we observe wide variance in behaviors
that characterize real user data. Different app distributions appear
at different times. Occasionally long spells of a particular app oc-
cur, while short spells are very common. Indeed, toggling apps is
observed, where a “core” app dominates a time period but is in-
terrupted frequently with short visit into one or two other apps.
Finally, there is a general time window of work hours in the day for
this user. Our goal is to create/discover a model that, when trained
on data such as that shown in Figure 1, will produce data that has
similar qualities. While the general workflow for creating such a
model is to identify metrics that measure the desired qualities, and
then leverage these metrics to design and evaluate models, it is
unknown what combination of sequential measures capture the
qualities of real user’s behavior—and this is a non-trivial problem!

Although working in social sciences, Studer & Ritschard [19]
encountered this very problem and have laid a foundation of sequen-
tial concepts that frames our approach. We consider similarity of

sequential activity data with regard to four sequence characteristics
as itemized by Studer & Ritschard:

• Sequencing - the ordering of distinct applications (i.e., order
in which a user jumps from one application to another);

• Duration - the number of consecutive observations of the
same application (equivalently, uninterrupted time spent in
each application);

• Timing - the time(s) of day at which each application is used;
• Distribution - the total time spent in each distinct application.

All of these characteristics are ideally similar between the real user
data and the desired synthetic user data. Further, some element
of stochasticity or randomness appears in the user data that we
seek. Hence, we test probabilistic generative models in a framework
we iteratively designed with the above characteristics in mind to
approach an accurate method for synthesizing realistic user data.

Continuing, we introduce necessary terminology and notation,
following previous works ([6, 19]) but adapted for our needs.

• The terms state and app and symbol are used interchangeably
to refer to the user’s active application.

• A Symbol Time Sequence (STS) is a sequence s(t) where each
element of the sequence s(ti) denotes the symbol at time ti .

• A spell is a consecutive subsequence of the same symbol,
or equivalently, an uninterrupted period spent in the same
application; it follows that spell length, the number of con-
secutive same symbols, is duration as defined above.

Figure 1: Ground Truth Data Example: Ten days (two work weeks) of data (after preprocessing) for a user.

CSET’21, August 09, 2021, Virtual Sean Oesch, Robert Bridges, Miki Verma, Brian Weber, and Oumar Diallo

• The Distinct Successive States (DSS) is the sequence of distinct
symbols observed, where all spells are treated as length 1.
We denote a DSS using u = (u(1), . . . ,u(m)).

• A Distinct Successive State Duration Sequence (DSSDS) is a
sequence of (symbol, spell duration) tuples for each spell in
the DSS.

Example: For the toy STS, s = (a,b,b,b,a, c, c) there are three
states or symbols, namely, a,b and c; symbol a has two spells of
length 1, b has a spell of length 3, and c has a spell of length 2;
the DSS is u = (a,b,a, c); the corresponding DSSDS is ((a, 1), (b, 3),
(a, 1), (c, 2)).

The DSSDS is a redundant but alternative specification of the
original STS. As we shall see, choosing whether to consider a user
activity sequences as an STS or a DSSDS has an impact on model
choice and accuracy that we explore via initial results.

2.3 Modeling
We develop a flexible framework for modeling user activity se-
quences where a particular model can be specified by three deci-
sions:

(1) Sequence Representation: STS or DSSDS (Sec. 2.3.1);
(2) Temporal Structure: Flat or Hierarchical (Sec. 2.3.2).

(3) Sequential Model Type & Hyperparameters: Markov Chain
(MC), Hidden Markov Model (HMM), or Random Surfer (RS);
hyperparameters vary per model type (Sec. 2.3.3);

The four possible graphical model structures are depicted in Ta-
ble 1 with rows/columns corresponding to the pair of structural
dichotomies ((1) and (2)). Sequential model types (3) are shown in
Table 2 along with the model-specific hyperparameters we tested.
Each of the four structures (choices for (1) and (2)) are used with
one of the three model types, yielding a total of 4 × 3 = 12 model
combinations (4 × 6 = 24 when considering hyperparameters we
tested). To motivate our framework, we first note that all models
are Markovian, that is, they are built to preserve some sequential
characteristics. We test three increasingly complex models culmi-
nating in the RS model, which is an intuitive choice for how one
navigates between apps. The STS vs. DSSDS flexibility was added as
we were uncertain how such representations affect the model, while
the second temporal structure choice was added to accommodate
time-of-day characteristics.

2.3.1 Sequence Representation Structure: STS vs. DSSDS. Refer to
Section 2.2 for definitions and examples of STS, DSSDS, and related
concepts/terminology. The STS structural choice simply means that
the sequence models (MC, HMM, Random Surfer) will regard and

Table 1: Graphical Models for the four general model frameworks (Sec. 2.3). Here st denotes the STS, i.e., st is the app in use at
timestamp t ; (ui ,di) denotes the DSSDS, i.e., ui is the i-th app used for duration di ; and cw denotes the cluster for time window
w (Sec. 2.3.2). Dotted lines indicate dependence, as dictated by the specific model types (see Table 2). Beginning in the top left,
the Flat STSmodel simply samples st (the app at time t) with amodel that depends on the previous times’ apps (conditioned on
sj for j < t). Moving to the right, the Flat DSSDS samples the next app ui conditioned on the previously used apps (uj for j < i),
and samples the duration di conditioned on ui . The solid arrow indicates that di depends on ui and is computed simply by
counting and dividing frequencies seen in the training data. Moving to the Hierarchical models (bottom row), for each 1-hour
time window w , a cluster cw is sampled, depending on the previous time windows’ clusters. As indicated by the rectangles,
each cluster (cw) dons its own Flat model (either STS or DSSDS), which is used to sample the app usage within that 1-hour
time window. Note that for some models, dotted dependencies exist that are not shown; e.g., if the Flat STS model chosen is a
Markov chain of order 2, st is dependent on st−2 as well as st−1.

CSET’21, August 09, 2021, Virtual Sean Oesch, Robert Bridges, Miki Verma, Brian Weber, and Oumar Diallo

the DSS is 𝑢 = (𝑎, 𝑏, 𝑎, 𝑐); the corresponding DSSDS is ((𝑎, 1), (𝑏, 3),
(𝑎, 1), (𝑐, 2)).

The DSSDS is a redundant but alternative specification of the
original STS. As we shall see, choosing whether to consider a user
activity sequences as an STS or a DSSDS has an impact on model
choice and accuracy that we explore via initial results.

2.3 Modeling
We develop a flexible framework for modeling user activity se-
quences where a particular model can be specified by three deci-
sions:

(1) Sequence Representation: STS or DSSDS (Sec. 2.3.1);
(2) Temporal Structure: Flat or Hierarchical (Sec. 2.3.2).
(3) Sequential Model Type & Hyperparameters: Markov Chain

(MC), Hidden Markov Model (HMM), or Random Surfer (RS);
hyperparameters vary per model type (Sec. 2.3.3);

The four possible graphical model structures are depicted in Ta-
ble 1 with rows/columns corresponding to the pair of structural
dichotomies ((1) and (2)). Sequential model types (3) are shown in
Table 2 along with the model-specific hyperparameters we tested.
Each of the four structures (choices for (1) and (2)) are used with
one of the three model types, yielding a total of 4 × 3 = 12 model

combinations (4 × 6 = 24 when considering hyperparameters we
tested). To motivate our framework, we first note that all models
are Markovian, that is, they are built to preserve some sequential
characteristics. We test three increasingly complex models culmi-
nating in the RS model, which is an intuitive choice for how one
navigates between apps. The STS vs. DSSDS flexibility was added as
we were uncertain how such representations affect the model, while
the second temporal structure choice was added to accommodate
time-of-day characteristics.

Table 2: Specific Model Types with Tested Hyperparameters

Type Hyperparameters

Markov Chain (MC) 𝑚 = 1, 2
Hidden Markov Model (HMM) 𝑛ℎ = 3, 5, 7
Random Surfer (RS) 𝛼 = [20, 20], 𝛽𝑖, 𝑗 = 𝛿𝑖, 𝑗 = 1.1

2.3.1 Sequence Representation Structure: STS vs. DSSDS. Refer to
Section 2.2 for definitions and examples of STS, DSSDS, and related
concepts/terminology. The STS structural choice simply means that
the sequence models (MC, HMM, Random Surfer) will regard and

Table 1: Graphical Models for the four general model frameworks (Sec. 2.3). Here 𝑠𝑡 denotes the STS, i.e., 𝑠𝑡 is the app in use at
timestamp 𝑡 ; (𝑢𝑖 , 𝑑𝑖) denotes the DSSDS, i.e., 𝑢𝑖 is the 𝑖-th app used for duration 𝑑𝑖 ; and 𝑐𝑤 denotes the cluster for time window𝑤

(Sec. 2.3.2). Dotted lines indicate dependence, as dictated by the specific model types (see Table 2). Beginning in the top left,
the Flat STS model simply samples 𝑠𝑡 (the app at time 𝑡) with a model that depends on the previous times’ apps (conditioned
on 𝑠 𝑗 for 𝑗 < 𝑡). Moving to the right, the Flat DSSDS samples the next app 𝑢𝑖 conditioned on the previously used apps (𝑢 𝑗 for
𝑗 < 𝑖), and samples the duration 𝑑𝑖 conditioned on 𝑢𝑖 . The solid arrow indicates that 𝑑𝑖 depends on 𝑢𝑖 and is computed simply by
counting and dividing frequencies seen in the training data. Moving to the Hierarchical models (bottom row), for each 1-hour
time window 𝑤 , a cluster 𝑐𝑤 is sampled, depending on the previous time windows’ clusters. As indicated by the rectangles,
each cluster (𝑐𝑤) dons its own Flat model (either STS or DSSDS), which is used to sample the app usage within that 1-hour time
window. Note that for some models, dotted dependencies exist that are not shown; e.g., if the Flat STS model chosen is a Markov
chain of order 2, 𝑠𝑡 is dependent on 𝑠𝑡−2 as well as 𝑠𝑡−1.

STS DSSDS

𝑠𝑡−1 𝑠𝑡

𝑢𝑖−1 𝑢𝑖

𝑑𝑖−1 𝑑𝑖

Flat

𝑐𝑤−2 𝑐𝑤−1 𝑐𝑤

𝑠𝑡𝑠𝑡−1 𝑠𝑡𝑠𝑡−1 𝑠𝑡−1 𝑠𝑡

𝑐𝑤−2 𝑐𝑤−1 𝑐𝑤

𝑢𝑖𝑢𝑖−1

𝑑𝑖−1 𝑑𝑖

𝑢𝑖𝑢𝑖−1

𝑑𝑖−1 𝑑𝑖

𝑢𝑖−1 𝑢𝑖

𝑑𝑖−1 𝑑𝑖

Hierarchical

4

D2U: Data Driven User Emulation CSET’21, August 09, 2021, Virtual

Table 2: Specific Model Types with Tested Hyperparameters

Type Hyperparameters

Markov Chain (MC) m = 1, 2
Hidden Markov Model (HMM) nh = 3, 5, 7
Random Surfer (RS) α = [20, 20], βi, j = δi, j = 1.1

generate the original, full, STS sequence, which includes repeated
symbols (constant subsequences) if an app is used for consecutive
time intervals. On the contrary, the DSSDS structural choice indi-
cates that the sequence model will be trained on and generate a
DSS (Distinct State Sequence, containing no repeated symbols) com-
bined with the number of intervals to remain in each symbol. More
specifically, a symbol is drawn from the symbol model; then, the
duration for the chosen symbol is sampled from the given symbols’
duration probability distribution. The spell duration distributions
are learned for each symbol from all training sequences.

2.3.2 Temporal Structure: Flat vs. Hierarchical. The Flat structure
choice indicates that the sequence model (choice (3)) will be trained
on and generate a whole day’s sequence data (based on structural
choice (1) for the representation of the day’s sequence).

The Hierarchical structure choice incorporates a latent variable
c that regards the time of day. For the Hierarchical structure, the
input data sequences are split into time window subsequences (1
hour in our case), vectorized, and clustered via K−means clustering
(see Figure 2). We learn K from each user via the elbow method.
Next, let v1, . . . ,vK denote the cluster centers, which are simply
the expected percent each app appeared in that cluster’s constituent
data. Since each (1hr) time window,w , in the training data now dons
a cluster assignment, cw ∈ {1, . . . ,K}, a Markov distribution of
order 2 is learned on the sequence of clusters observed. (This is used
to generate a cluster for each hour of the day and is different than the
sequence model used for generating the application sequence on 5s
intervals.) Finally, a (per cluster) sequence model is trained from the
data in each cluster, resulting in app sequence modelsM1, . . . ,MK
(based on the other structural and modeling choices (1), (3)). These
K user models attempt to capture that users’ behavior as observed
in the data that forms that particular cluster. The generative model
process is then as follows: at each time window (w) a cluster (cw)
is chosen based on the current time window, and the previous two
chosen time window clusters; a subsequence for that time window
(that hour of the day) is generated from the corresponding cluster’s
app sequence model (Mcw). A priori, the benefit of this approach is
that natural differences in behavior throughout the day are taken
into account. As our results show, this hierarchical structure also
generates higher variance sets of sequences, which tends to produce
more realistic sequence sets.

2.3.3 Sequential Model Types. Markov Chain (MC): This model
uses an MC model of orderm, the lone hyperparameter; i.e., the
probability of a symbol depends only on the previousm symbols.
This model is learned from the input data sequences and is imple-
mented using Pomegranate Python package.3 For details on theory
see, e.g., [7]. As MC orderm = 1 is perhaps the simplest model that
3https://github.com/jmschrei/pomegranate

Figure 2: Clusters (cw , for Hierarchical temporal structure)
displayed for each 1-hour time window (w) and found for
user data from Figure 1 with K = 7.

respects sequential data, we consider it the benchmark sequence
model.

Hidden Markov Model (HMM): HMM models are comprised of
nh hidden or latent states (nh is a hyperparameter), an MC model
for transitioning among the hidden states (of order 1 in our case,
so a transition matrix), and each hidden state is furnished with
an emission probability, which is simply a distribution over the
observed symbols; for details on HMM theory, see, e.g., [16]. The
generative process uses the transition matrix to sample the latent
state, then a symbol is sampled from emission probability for that
state. This model is trained from the input data sequences using
the Baum-Welch algorithm and implemented using Pomegranate
Python package.3

Random Surfer: The Random Surfer model is the underlying
model in the PageRank algorithm [4]. The “surfer” (user) moves
between applications (symbols) as a mixture of a symbol transition
matrixT (row-stochastic matrix giving anMCmodel of order 1) and
a “teleportation” distribution p (multinomial distribution) on the n
symbols. Specifically, at each step, the user will, with probability π ,
choose the next symbol based onT and the current symbol, or, with
probability 1 − π , sample the next symbol from the multinomial
distribution of symbols, p, which is independent of the current sym-
bol. This model was developed to mimic the behavior of a surfer
browsing through web pages, choosing at each step to either follow
a link on the current page, or jump to a entirely unrelated page.
The model is parameterized by π , p, and T , which are learned from
data by optimizing the posterior distribution (Maximum a Poste-
riori estimate), using a gradient ascent algorithm. See Appendix
A for more details. The hyperparameters of our implementation
define the prior distributions on each parameter: mixing param-
eter π ∼ Beta(α), transition matrix rows (multinomials) T (i, ·) ∼
Dirichlet(βi) and multinomial p ∼ Dirichlet(δ). As shown in Table

CSET’21, August 09, 2021, Virtual Sean Oesch, Robert Bridges, Miki Verma, Brian Weber, and Oumar Diallo

Table 3: Structural Choices Pros & Cons: For each of the four structural choices (Flat vs. Hierarchical and STS vs. DSSDS) we
present two days (7AM - midnight) of data sampled from the trained Markov chain of order 1 (benchmark model). Compare
this with ground truth data and regard key in Figure 1. For both Flat andHierarchical structure, STSmodels (first column) have
unrealistically short spell length; that is, they jump between apps too often. DSSDS models (second column), which sample a
necessarily different symbol and the duration to remain in that symbol, capture much more realistic spells. Now regarding
the first row, we note that for both STS and DSSDS models, the Flat structure disregards time of day—notice early and late app
usage along with long periods logged out during the middle of the day, neither of which occurred in ground truth data. As
designed, the Hierarchical models (bottom row) capture time-of-day trends in the data. Finally, we note that while this data
is only two days from the MC order 1 model, the advantages and pitfalls of these structural choices are representative for all
models. Hierarchical DSSDS models are most realistic in terms of app duration and time-of-day patterns.

STS DSSDS

Flat

Hierarchical

2, we use 20 for both α components, strongly encouraging equal
use of T and p, and use 1.1 for all Dirichlet values.

2.4 Qualitative Modeling Results
For the hierarchical models, K = 7 clusters were found for this user
by the elbow method. A sample of the clusters is depicted in Figure
2. We note that K varies per user in empirical experiments, so we
suggest learning this parameter per user.

Our results found trends based on each of the structural decisions
(choices (1) and (2)). Regard Table 3, which shows representative
samples from the benchmarkmodel, (MC,m = 1) for each of the four
structural decisions, and compare to the ground-truth data, Figure 1.
In short, regardless of sequence model choice, STS representations
result in spell lengths that are all very short—i.e., apps are changed
too often and too sporadically. To explain this, consider sampling
the same apps for an extended period of time. Although longer
spells are not infrequent, the probability of staying in the same app,
say P(a |a), is small since our data has so many app changes. Thus,
the probability of a spell of length k is (equal for MC withm = 1 or
otherwise close to) P(a |a)k , which tends to 0 quickly as k grows.

Our results also confirm that the Flat temporal structure pro-
vides unrealistic data for the time of day (unsurprisingly as they
do not regard the time of day), while the Hierarchical temporal
structure does capture time-of-day trends. Overall, regardless of
the sequential model choice, DSSDS Hierarchical structure is best,
giving more realistic spell lengths (app use duration) and respecting
trends based on the time of day.

Figure 3 depicts the best performing models under the DSSDS
Hierarchical structure. The sequence models MCm = 2 and HMM
nh = 5, 7 (7 not shown) provide very realistic generated app se-
quences. The Random Surfer model is a bit more inclined to change
apps rapidly; in particular, the large number of logged-out periods
midday seem unrealistic. These preliminary results conclude that
the DSSDS Hierarchical with MC or HMM are the best combina-
tions. We note that the Hierarchical temporal structure will allow
different sequential model types per cluster (e.g.,M1 is MC, while

M2 is Random Surfer), although we did not test this. In light of
these results, for clusters with high entropy and overall short spells,
we suspect the Random Surfer sequential model to excel.

3 D2U DEPLOYMENT
To deploy D2U inside a cyber range, we developed a custom soft-
ware architecture. This architecture, shown in Figure 4, is scalable,
enabling hundreds or thousands of emulators to run simultane-
ously, and extensible, allowing additional user actions to be added
and expanded with minimal effort using python. A unique config-
uration file generated by our model is provided to the emulator
software running on each device. When testing in our range, we
used configuration files generated by the model described in this
paper, as well as a model built on data collected from another of the
paper authors. The emulator software then performs the specified
actions, including web browsing, document creation and editing,
email, ssh, ftp, shell commands, and other common behaviors.

Because we focused on application sequences for this initial
work, more granular actions such as mouse clicks and text entry
that occur within each application are guaranteed to occur in the
correct order, though we sought to add as much realism as possible.
For example, the web browsing action draws from a distribution
based upon the Alexa Top 100 websites in the US when visiting
websites, and for tab management we based the probability of a tab
being closed or a new tab being opened on the data we collected
from our user. However, the workflow within each application is
guaranteed to be consistent and rational. The web browser will be
open prior to our code attempting to visit a website, for example.

The emulation code itself is written such that individual action
types are plugins that use a common interface. This design allows
new actions to be added with minimal effort by creating a python
plugin that conforms to this interface. To provide network services
inside cyber ranges where they may not already be available, we
used Docker containers to host common services.

When running, the emulator software logs its actions and sta-
tus using a Kafka stream. Other applications can subscribe to this

D2U: Data Driven User Emulation CSET’21, August 09, 2021, Virtual

stream in order to log or analyze emulator behaviors. In our en-
vironment, there is a management server that runs alongside a
website built using the MEAN (MongoDB, Express.js, AngularJS,
Node.js) stack. The website displays summary statistics for emu-
lators, such as the total number of each action type that has run,
as well as statistics for individual emulators, including current ac-
tion, time of last heartbeat message received for that emulator, and
other relevant information. The website can also be used to send
messages to individual emulators through the server, the server
acting as an emulation orchestrator. These messages can be sent as
interrupts, so that the emulator ceases its current action to perform
the one specified, or such that they are simply added to the end of
the existing action queue.

When using this architecture for data generation or testing, it is
important to ensure that the emulated user and the management
server are communicating out of band from the traffic generated
by the emulated user nodes. Generated traffic should be from the

(a) Markov Chain Model (m = 2)

(b) Hidden Markov Model (nh = 5)

(c) Random Surfer Model

Figure 3: Following Table 3, whereHierarchical DSSDS struc-
ture exhibits the most representative behavior, we now vary
the model type. Five days sampled from each of MC, HMM,
RSmodels, with Hierarchical (K = 7 clusters, 1-hour window
length) DSSDS structure, trained on sequences from user in
Figure 1.

emulated user’s actions and not from contact with the manage-
ment server. In cases where only a limited number of emulators
are required or a more lightweight solution is desired, D2U can
be run headless without connecting to either the frontend or the
management server. When running headless, less verbose logging
information is stored locally.

4 EXISTING USER EMULATION
TECHNOLOGIES

Existing user emulation technologies take one of the following ap-
proaches: (1) modeling and generating network traffic directly [12,
13, 17], (2) replaying recorded user behaviors [5, 15], (3) agent-
based simulation [21], (4) using human generated configuration
files (these may be approximated from real data) [20]. Solutions
that fall into category (1) are fundamentally different from D2U
because they replay or generate network traffic, whereas D2U em-
ulates user behavior on end devices. In addition to the fact that it is
more realistic to generate network traffic by emulating behavior
on end devices, simply generating network traffic is also limited in
its ability to test tools focused on anomalous user behavior.

Dutta et al. [5] developed user bots to address this shortcoming
in traffic generators while testing insider threat detection systems,
and was the major work we identified in category (2). These bots
can be run in an enterprise system to test live deployments or in
a cyber range. To enhance the realism of these bots, they replay
user behavior data recorded during a study of West Point Cadets.
Megyesi et al. [15] also developed a traffic generation system to cre-
ate test data for deep pack inspection technologies. Their solution
did not aim to emulate a specific user, but rather replayed slices of
recorded user data on end devices to produce aggregate traffic with
similar characteristics to that seen in operational networks.

The major work in category (3) is the DETER Agents Simulating
Humans (DASH) [21] project from USC-ISI. DASH seeks to cre-
ate user agents that are goal-driven, have incomplete or incorrect
views of security, and respond to stress by making less rational
decisions. One of the key DASH contributors, Jim Blythe, has done
other significant work at the intersection of human behavior and
computer security [2, 11].

Finally, there are numerous technologies that fall into category
(4), so for the sake of space we include notable representative sam-
ples. GHOSTS [20] was developed by Carnegie Mellon in order to
build accurate, autonomous non-player characters (NPCs) for cyber
warfare exercises. It is written in C# and supports web browsing,
terminal commands, email, and editing office documents. Configu-
ration of users is accomplished using JSON files that specify what
actions a user will perform and provide sample text for emails and
documents. In addition, some privately owned companies, such
as Skaion 4 and SimSpace 5, also provide user behavior emulation
capabilities.

4.1 Relation to D2U
None of the four aforementioned approaches to user emulation use
application sequence data to build generative models of user behav-
ior. To our knowledge, D2U is the first such emulation technology.
4http://www.skaion.com/
5https://simspace.com/

http://www.skaion.com/
https://simspace.com/

CSET’21, August 09, 2021, Virtual Sean Oesch, Robert Bridges, Miki Verma, Brian Weber, and Oumar Diallo

Model
Generated
Config File

Emulator
Software

Mongo
Database

front end gui

Display Summary
Statistics

Pull Log Data
 For GUI

Send Emulator
Logs to Kafka

Management
Server

Send CommandSend Command

Make Request

Server Pulls
 Log Data

Scales to hundreds of emulated
machines, each with its own

unique config file

Kafka InstanceDocker Hosted
Services

Email, SSH, SFTP,
CUPS, mDNS,

SNMP, Telnet, ...

Figure 4: D2U Deployment Architecture

In contrast to approach (1), D2U emulates actual user behaviors
rather than traffic patterns. In contrast to approaches (2) and (4),
D2U provides limitless, realistic user behavior data that appears to
be generated by the user the model was trained on. And in contrast
to approach (3), D2U does not rely on accurately representing a
user’s mental model of security or their environment.

5 CONCLUSION
D2U provides unlimited, novel sequences of user behavior using
generative models based on actual user data for use in testing and
training. In this paper we described our processes for data collection
and model generation, as well as qualitatively demonstrating the
performance of our model and describing the software architecture
used in deployment. Specifically, we considered different structural
modeling decisions—STS vs. DSSDS data representations and a po-
tentially including a temporal latent variable (Flat vs Hierarchical
structure)—as well as three sequence models (Markov Chain, Hid-
den Markov Model, and Random Surfer) used with each structural
combination. We found that, regardless of the sequence model used,
DSSDS Hierarchical structure best captures spell length (duration
in each app) and app use per time of day. When instantiating the
DSSDS Hierarchical structure with the Markov Chains and Hidden
Markov Models the best results are achieved on our data.

In the future, we plan to conduct further testing on additional
users and user types (e.g. researcher, IT staff, administrative as-
sistant, manager) to refine and expand upon our results. In this
preliminary work we utilized data from a single researcher to de-
velop and evaluate our models. Other users and user types will
demonstrate unique sequential and temporal patterns that will
impact model selection and hyperparameters.

We also plan to collect additional forms of user data to use as
input to our models. In addition to application sequence data, file
access logs, CPU usage data, browser logs, and screenshot image
analysis would offer additional insight into user behaviors.

Ulimately, we hope to pioneer the next generation of emulated
users: while our approach is an adequate solution for the problem

we encountered (cyber range environment), a logical next step
conceptually is adding a responsive and “smart” AI component to
these emulated users; e.g., embedding NLP components to “read”
and realistically respond to chat messages, emails, etc. In short,
broadening the task from faithfully generating sequences of actions
to building emulated users that seek to pass the Turing test. An
example step in this direction would be to use an extra layer in the
model where a user is “holding in mind” multiple applications per
task and switching between them.

ACKNOWLEDGMENTS
The research is based upon work supported by the Department
of Defense (DOD), Naval Information Warfare Systems Command
(NAVWAR), via the Department of Energy (DOE) under contract DE-
AC05-00OR22725. The views and conclusions contained herein are
those of the authors and should not be interpreted as representing
the official policies or endorsements, either expressed or implied, of
the DOD, NAVWAR, or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. This
technology is currently under provisional patent 202004661.US.00
as Data Driven User Emulator.

REFERENCES
[1] William H Allen. 2007. Mixing wheat with the chaff: Creating useful test data

for ids evaluation. IEEE Security & Privacy 5, 4 (2007), 65–67.
[2] A Botello, J Lin, D Mozzacco, JE Sutton, M Spraragen, J Blythe, and M Zyda. 2010.

An Agent Architecture for Large-scale Security Simulation. (2010).
[3] Timothy M Braje. 2016. Advanced tools for cyber ranges. Technical Report. MIT

Lincoln Laboratory Lexington United States.
[4] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual

web search engine. Computer networks and ISDN systems 30, 1-7 (1998), 107–117.
[5] Preetam Dutta, Gabriel Ryan, Aleksander Zieba, and Salvatore Stolfo. 2018. Sim-

ulated user bots: Real time testing of insider threat detection systems. In 2018
IEEE Security and Privacy Workshops (SPW). IEEE, 228–236.

[6] Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, and Matthias Studer. 2011.
Analyzing and Visualizing State Sequences in R with TraMineR. Journal of
Statistical Software 40, 4 (2011). https://doi.org/10.18637/jss.v040.i04

[7] Paul A Gagniuc. 2017. Markov chains: from theory to implementation and experi-
mentation. John Wiley & Sons.

https://doi.org/10.18637/jss.v040.i04

D2U: Data Driven User Emulation CSET’21, August 09, 2021, Virtual

[8] Wael H Gomaa, Aly A Fahmy, et al. 2013. A survey of text similarity approaches.
International Journal of Computer Applications 68, 13 (2013), 13–18.

[9] Richard W Hamming. 1950. Error detecting and error correcting codes. The Bell
system technical journal 29, 2 (1950), 147–160.

[10] William R Knight. 1966. A computer method for calculating Kendall’s tau with
ungrouped data. J. Amer. Statist. Assoc. 61, 314 (1966), 436–439.

[11] Vijay Kothari, Jim Blythe, Sean W Smith, and Ross Koppel. 2015. Measuring the
security impacts of password policies using cognitive behavioral agent-based
modeling. In Proceedings of the 2015 Symposium and Bootcamp on the Science of
Security. 1–9.

[12] Samir Mammadov, Dhanish Mehta, Evan Stoner, and Marco M Carvalho. 2017.
High fidelity adaptive cyber emulation. In 2017 IEEE Symposium Series on Com-
putational Intelligence (SSCI). IEEE, 1–8.

[13] Frederic Massicotte, Francois Gagnon, Yvan Labiche, Lionel Briand, and Mathieu
Couture. 2006. Automatic evaluation of intrusion detection systems. In 2006 22nd
Annual Computer Security Applications Conference (ACSAC’06). IEEE, 361–370.

[14] John McHugh. 2000. Testing intrusion detection systems: a critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed by lincoln
laboratory. ACM Transactions on Information and System Security (TISSEC) 3, 4
(2000), 262–294.

[15] Péter Megyesi, Géza Szabó, and Sándor Molnár. 2015. User behavior based traffic
emulator: A framework for generating test data for DPI tools. Computer Networks
92 (2015), 41–54.

[16] Lawrence R Rabiner. 1989. A tutorial on hidden Markov models and selected
applications in speech recognition. Proc. IEEE 77, 2 (1989), 257–286.

[17] Lee M Rossey, Robert K Cunningham, David J Fried, Jesse C Rabek, Richard P
Lippmann, Joshua W Haines, and Marc A Zissman. 2002. LARIAT: Lincoln
adaptable real-time information assurance testbed. In Proceedings, IEEE Aerospace
Conference, Vol. 6. IEEE, 6–6.

[18] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. 2018. Toward gen-
erating a new intrusion detection dataset and intrusion traffic characterization..
In ICISSP. 108–116.

[19] Matthias Studer and Gilbert Ritschard. 2014. A comparative review of sequence
dissimilarity measures. (2014). https://doi.org/10.12682/lives.2296-1658.2014.33

[20] Dustin D Updyke, Geoffrey B Dobson, Thomas G Podnar, Luke J Osterritter,
Benjamin L Earl, and AdamDCerini. 2018. Ghosts in theMachine: A Framework for
Cyber-Warfare Exercise NPC Simulation. Technical Report. CARNEGIE-MELLON
UNIV PITTSBURGH PA PITTSBURGH United States.

[21] John Wroclawski, Terry Benzel, Jim Blythe, Ted Faber, Alefiya Hussain, Jelena
Mirkovic, and Stephen Schwab. 2016. DETERLab and the DETER Project. In The
GENI Book. Springer, 35–62.

[22] Stefano Zanero. 2007. Flaws and frauds in the evaluation of IDS/IPS technologies.
In Proc. of FIRST. Citeseer.

A RANDOM SURFER (PAGERANK) MODEL
IMPLEMENTATION

Let s = [s0, . . . , sm], with st ∈ {1, . . . ,n}, indicating the application
(of n applications) observed at each time interval form + 1 consec-
utive time intervals. From each users we will have ideally multiple
(l) observation sequences, and use superscript k , skt to denote the
kth sequence of observations from that user.

We follow the PageRank [4] diffusion process to model the user’s
trace of applications with a mixture model, although our end goal
is different—we are not interested in using the stationary vector to
rank nodes (nodes represent applications in our case), but instead
leverage the mixture model between amarkov transitionmatrix and
non-markov “starting” distribution for modeling the application
sequence per user. Notationally, let

• π ∈ [0, 1] be a mixing parameter or dampening factor, sim-
ply a binomial probability for the mixture model (coin flip)
between p and T ;

• p : {1, . . . ,n} → [0, 1]n , be the starting distribution (∑p(j) =
1), a multinomial over alln applications representing the like-
lihood of starting a new task with that application;

• T ∈ [0, 1]n×n be a row-stochastic transitionmatrix,∀i∑j T (i, j)
= 1, so that T (i, j) = P[st = j |st−1 = i], i.e., the probability
the user transitions from application i to j.

sktzk (t)πα T (i, ·)

p

α βi

δ

1 ≤ t ≤ m

1 ≤ k ≤ l

1 ≤ i ≤ n

Figure 5: Plate diagram for mixture model. Each sk is a sequence
of observed state changes (applications used) and are assumed inde-
pendent. We have priors as follows: mixing parameter π ∼ Beta(α),
transition matrix rows (multinomials) T (i, ·) ∼ Dirichlet(βi) and
multinomial p ∼Dirichlet(δ). While initial state sk0 ∼ p , subsequent
states are sampled with amixture fromT (skt−1, ·)with probability π
(case z = 1) or sampled from p with probability 1 − π (case z = 0).

We interpret T as giving the likelihood of application transitions
from the natural workflow, as opposed to starting a new task, as
modeled by p.

As depicted in the plate diagram in Figure 5, our generativemodel
uses p as the starting distribution (for sampling s0), then for each
subsequent t , a binomial with mixing parameter π is used to decide
between sampling fromT (·, st) or independently drawing st fromp.
We use the “starting distribution”, p, both for the initial application
choice (sampling s0) and as the second distribution in the mixture
model, as users will choose an applications sometimes as the start
of a new task, while other times based on an inclination from
their current application (e.g., clicking a link in an email) modeled
by transition matrix T . Finally, multiple sequence observations
{skt }k will be considered i.i.d. samples from this generative model.
Formally,

P[{sk }k |π ,T ,p] =
∏
k

P[skt |π ,T ,p]

=
∏
k

P(sk0 |p)
∏
t

P(zt |π)P(skt |skt−1, z,T ,p) (1)

=
∏
k

p(sk0)
∏
t
[π ×T (skt−1, skt) + (1 − π) × p(skt)].

We seek the parameters optimizing the posterior distribution
(Maximum A Posteriori or MAP estimate) using conjugate priors
as follows: mixing parameter π ∼ Beta(α), transition matrix rows
(multinomials)T (i, ·) ∼Dirichlet(β) andmultinomialp ∼Dirichlet(δ),
i.e.,

π̂ , T̂ , p̂ := argmax
π ,T ,p

P(π ,T ,p |{sk },α , β,δ) . (2)

subject to constraints∑
j
T (i, j) = 1, 0 ≤ T (i, j) ≤ 1∑

j
p(j) = 1, 0 ≤ p(j) ≤ 1.

(3)

Hence this is an optimization over 1 + n × (n − 1) + (n − 1) =
(n+1)(n−1)+1 parameters: π , {T (i, j) : i = 1, . . . ,n, j = 1, . . . ,n−1},
and {p(j) : j = 1, . . . ,n − 1}, since T (i,n) = 1 − ∑

j<n T (i, j), and
p(n) = 1−∑j<n p(j).We use gradient ascent to optimize this. While

https://doi.org/10.12682/lives.2296-1658.2014.33

CSET’21, August 09, 2021, Virtual Sean Oesch, Robert Bridges, Miki Verma, Brian Weber, and Oumar Diallo

our function to be maximized is not in general concave, we plot the
function for our data to find it at least appears concave in our case.
Informed by this analysis, we simply walk up hill using gradient

ascent until convergence, and confirm convergence at the visualized
maximum.

	Abstract
	1 Introduction
	2 Modeling App Usage Sequences
	2.1 Data Collection & Preprocessing
	2.2 Sequential Concepts and Modeling
	2.3 Modeling
	2.4 Qualitative Modeling Results

	3 D2U Deployment
	4 Existing User Emulation Technologies
	4.1 Relation to D2U

	5 Conclusion
	Acknowledgments
	References
	A Random Surfer (PageRank) Model Implementation

