
Case Studies in Experiment Design on a minimega Based
Network Emulation Testbed

Brian Kocoloski
USC/ISI
USA

Alefiya Hussain
USC/ISI
USA

Matthew Troglia
Sandia National
Laboratories

USA

Calvin Ardi
USC/ISI
USA

Steven Cheng
Sandia National
Laboratories

USA

Dave DeAngelis
USC/ISI
USA

Christopher
Symonds

Sandia National
Laboratories

USA

Michael Collins
USC/ISI
USA

Ryan Goodfellow
USC/ISI
USA

Stephen Schwab
USC/ISI
USA

ABSTRACT
This paper describe our team’s experience using minimega, a net-
work emulation system using node and network virtualization, to
support evaluation of a set of networked and distributed systems
for topology discovery, traffic classification and engineering in the
DARPA Searchlight program [18]. We present the methodology we
developed to encode network and traffic definitions into an exper-
iment description model, and how our tools compile this model
onto the underlying minimega API. We then present three cases
studies which demonstrate the ability of our EDM to support ex-
periments with diverse network topologies, diverse traffic mixes,
and networks with specialized layer-2 connectivity requirements.
We conclude with the overall takeaways from using minimega to
support our evaluation process.

CCS CONCEPTS
• General and reference → Experimentation; Evaluation; •
Networks → Network performance analysis.

ACM Reference Format:
Brian Kocoloski, Alefiya Hussain, Matthew Troglia, Calvin Ardi, Steven
Cheng, Dave DeAngelis, Christopher Symonds, Michael Collins, Ryan Good-
fellow, and Stephen Schwab. 2021. Case Studies in Experiment Design on a
minimega Based Network Emulation Testbed. In Cyber Security Experimen-
tation and Test Workshop (CSET ’21), August 9, 2021, Virtual, CA, USA. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3474718.3474730

1 INTRODUCTION
Network emulation testbeds [7, 15, 26, 32, 34] have been widely
used for the last two decades to evaluate systems as they allow
users to deploy experiments in realistic and controlled environ-
ments. Testbeds allow users to deploy networks and nodes capable
of running real unmodified software, including operating systems,
routing/switching libraries, VPN and firewall programs, etc., as well

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
CSET ’21, August 9, 2021, Virtual, CA, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9065-1/21/08. . . $15.00
https://doi.org/10.1145/3474718.3474730

as end-host traffic from real applications. The ability to run unmod-
ified code provides fidelity and allows researchers to generalize
systematic results to the real world.

In recent years, node and network virtualization techniques have
further improved the utility of testbed based systems, as they allow
users to deploy arbitrary layer-2 network topologies and run exper-
iments at large scales that are not as constrained by the availability
of physical nodes and networks. The minimega [21] system from
Sandia National Laboratories exemplifies the use of virtualization
techniques, allowing it to emulate large and complex networks
on physical systems ranging from a single laptop to large-scale
clusters and supercomputers. Recent work has demonstrated that
while minimega’s use of virtualization does lead to some variance
in low level network behavior (e.g., packet jitter), most core applica-
tion and OS behaviors are generally similar in virtual and physical
environments [8].

We needed to evaluate novel network analysis and traffic engi-
neering research projects for the DARPA SearchLight program [18].
Due to its flexibility and high fidelity, we selected minimega de-
ployed on the DETER testbed [34] to support our evaluation.
Though minimega proved to be a useful tool, we found the process
of rapidly defining and automating experiments to be challenging.
Generally, we found that our challenges stemmed from minimega’s
approach to be both highly configurable and able to emulate many
different network elements with high fidelity. In order to meet these
goals, minimega’s API is low level; it gives users control to emulate
specific processor models/ISAs, network interface cards (NICs), and
many other device and architectural features that could be needed
to achieve various timing and behavioral characteristics. For exam-
ple, some DPDK [24] applications may desire virtio [28] or vfio [33]
rather than minimega’s default e1000 NICs, or advanced device fea-
tures such as multiqueue RX/TX ports. minimega also gives users
extensive control over the experiment runtime environment with
its command-and-control interface, miniccc [19], which uses per-
VM virtio serial ports to allow users to copy files, manage process

This research was developed with funding from the Defense Advanced Research
Projects Agency (DARPA). Distribution Statement A: Approved for Public Release,
Distribution Unlimited.
Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned sub-
sidiary of Honeywell International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525.
SAND Number: SAND2021-8495 C

https://doi.org/10.1145/3474718.3474730
https://doi.org/10.1145/3474718.3474730

CSET ’21, August 9, 2021, Virtual, CA, USA Kocoloski, Hussain, Troglia, Ardi, Cheng, DeAngelis, Symonds, Collins, Goodfellow and Schwab

lifecycles, and generally issue any commands that a typical shell
supports. The low level of control makes minimega usable for a va-
riety of needs, but for repeatedly defining and automating complex
tasks, we found it challenging to use these interfaces directly.

This paper presents our work in developing an experiment de-
scription model (EDM) that provides convenient abstractions with
which to rapidly define and automate experiments on minimega.
The model consists of a network abstraction and a traffic abstraction.
The network abstraction is largely inspired by existing work in the
network emulation community, such as the tcl based definition
in ns-2 [14] that allows intuitive ways to define topology, while
the traffic abstraction uses a structural format to generate complex
mixes of real-world application traffic through a single JSON file.
We discuss how these abstractions are encoded by users and how
we compile them to the minimega API.

Finally, we showcase the utility of our EDMs through three case
studies in the DARPA Searchlight program [18]. In the first case
study, we configure a wide range of topologies to enable evalua-
tion of a distributed network discovery system (Section 4.1). In the
second case study, we configure a large number of diverse mixes
of application traffic types to enable expansive combinatorial eval-
uation of a real-time traffic characterization system (Section 4.2).
Lastly, in the third case study, we evaluate a distributed traffic engi-
neering system with layer-2 characteristics not easily supported by
minimega’s default link emulation approach (Section 4.3).

In total, we conducted nearly 800 experiment runs to evaluate
these three systems during a period of about three weeks. We hope
that capturing our experience will make it easier for experimenters
to perform similar future evaluations.

2 RELATEDWORK
Network Emulation and Simulation. Network emulation testbeds

have been fundamental enablers of network and cybersecurity re-
search over the past several decades. Initially created in the earlier
2000s, the Emulab software [32] provides network emulation ser-
vices on variety of different compute and network devices, and
has supported network emulation on a large number of platforms
including DETER [34], CloudLab [26], and many others. Part of
Emulab’s success derives from its flexibility and familiarity to re-
searchers. For example, Emulab users encode network topologies,
traffic generators, and other network elements using a tcl based
language derived from the well known ns-2 discrete event simula-
tor [14], making it relatively easy to operate Emulab systems for
users familiar with simulators. While such simulators, including
ns-2, ns-3 [6] and OMNET++ [30] are useful for understanding fun-
damental network properties, they lack the ability to execute real
software, and thus emulation based testbeds enable higher fidelity
experimentation that is more generalizable to real world systems.

Network Emulation with Virtualization. In order to further im-
prove scale and flexibility, some testbeds use hardware virtual-
ization to map multiple network elements (including those that
require root privileges, such as the Linux kernel network stack), to
the same physical nodes. This consolidation of network elements
leads to better system utilization, and allows systems to support net-
work topologies with orders of magnitude more virtual nodes than
physical ones [22]. This consolidation can be a substantial boon to

CompilerJSON-based
traffic specification Minimega

cmd file

Link-based
network specification

Qemu &
network

configuration

Testbed
Deployment

Execution
Engine

Command &
control

operations

Traffic
binaries and

data

“web-browse” : {
 “server” : [
 “params” :
 { … }
]

Figure 1: Experiment definition and execution

testbed users as most experiments on emulation-based testbeds use
fewer than 3 nodes, a result primarily of resource limitations [12].
minimega [21] uses Qemu/KVM [3, 16] to emulate nodes and Open
vSwitch [23] to emulate network links.

Various other testbeds, including Distem [5], DETER [34],
Mininet [11], VINI [2], and EmuEdge [35] have used operating-
system virtualization techniques, usually called “containers,” to
functionally isolate emulated network entities on the same node.
While these techniques have been shown to reduce latency/jitter
that hardware virtualization sometimes induces [8], privileged code
generally cannot run in containers, which precludes multiple net-
work elements running custom networking stacks (e.g., the Linux
kernel or DPDK [24]) from being mapped to the same physical
machine. CPU advances have made hardware virtualization over-
head small for most operations [17], and in situations where even
minor packet jitter impacts an experiment, device passthrough tech-
niques [33] give VMs direct access to network hardware without
sacrificing VM isolation.

Experiment Description Models and Orchestration. This paper de-
scribes our experience using minimega on the DETER testbed [4].
Specifically focusing on how we handled the complexity associated
with building varied network and traffic configurations with limited
resources on the testbed. Similar efforts have been made to address
experimentation challenges on other testbed systems; examples
include MAGI [13] for the DETER testbed, OEDL [25] for OMF
based testbeds, and Rumba [31] for experiments in GENI and FIRE+
systems. In addition to defining experiment topologies and link
emulation criteria, these systems also often seek to enable better
experiment orchestration, for example by enabling more graceful
handling of errors and providing more control over fine-grained
timing and ordering of events. While our experience lead us to
focus initially on better support for network and traffic configu-
ration, a possible future extension of our work is to target such
an orchestration system in order to provide greater control over
runtime behavior.

Case Studies in Experiment Design on a minimega Based Network Emulation Testbed CSET ’21, August 9, 2021, Virtual, CA, USA

3 EXPERIMENT DESCRIPTION MODEL
At the outset of the DARPA Searchlight project, our team began
the task of evaluating a set of network analysis and traffic engi-
neering projects on a minimega based testbed. In the early stage of
developing basic experiments, we used minimega’s mechanisms to
manage images, construct simple topologies, control address allo-
cation and routing behavior, and manage the experiment runtime
environment, which usually entailed deploying a small number of
traffic generators and verifying basic network functionality. For
these purposes, we found minemega to be intuitive and mature, and
we developed confidence that it could support our experimental
requirements. However, as our experimental needs became more
complex, we felt a need to develop new mechanisms to enhance
and augment minimega. Specifically, we desired new mechanisms
to more rapidly define network topologies and application deploy-
ment scripts, as well as to emulate a certain class of layer-2 links
for which minimega’s default link emulation mechanism was in-
sufficient.

This section discusses our experience with addressing these chal-
lenges with a structured interface called the experiment description
model (EDM). Figure 1 illustrates a high level overview of how our
system uses EDMs to define and run experiments. The two boxes
on the left hand side illustrate the two fundamental pieces of an
EDM: a network specification and a traffic specification. A network
specification describes the topological properties and other net-
work characteristics of the experiment, while a traffic specification
describes the types of applications to deploy on a given network.
As shown in Figure 1, the experiment compiler translates a given
EDM into a set of command files that configure the testbed’s virtu-
alization and command-and-control systems. Sections 3.1 and 3.2
discuss the network and traffic models, respectively, showing how
users define them and how the experiment compiler translates them
to minimega configurations.

3.1 Network Specification Model
Our network specification model extend’s the minimega API by
(1) providing a convenient link-centric interface to control the
fundamental topological properties of an experiment, and (2) adding
a “VM-to-VM” link abstraction which addresses a limitation in
minimega’s default link emulation strategy.

Link-centric API. Our model extends the minimega API to ex-
press topological characteristics through a link-centric API, in a
fashion similar to the ns-2 [14] tcl based format common in em-
ulation testbeds. Figure 2 shows an example of how a relatively
simple network topology would be programmed in minimega and
with our extensions. Figure 2b illustrates the node-centric nature
of the minimega API, as each VM encodes a full list of network
interface cards (vm config net) attached to it. In cases where
each link should be considered a point-to-point unicast link, each
network name (foo[0-9]) must be unique to properly emulate
the desired connectivity. We frequently found it difficult to encode
lists of link names, particularly for complex topologies with large
numbers of links on some nodes (e.g., switches and hub routers).
Figure 2c shows how we extended the API with a link abstraction
that more naturally supports common link definitions. In this way,

c0

h1

h0

h2

h3

c2

h4

h7

h5

h6

c1

(a) Example topology

for i in $(seq 0 7); do
vm config net foo$i
vm start h$i

done
vm config net foo0,foo1,foo2,foo3,foo8
vm start c0
vm config net foo4,foo5,foo6,foo7,foo9
vm start c2
vm config net foo8,foo9
vm start c1

(b) minimega API

for i in $(seq 0 3); do
connect_vms h$i c0

done
for i in $(seq 4 7); do

connect_vms h$i c2
done
connect_vms c0 c1
connect_vms c2 c1

(c) Extended link based API

Figure 2: Topology specification examples

we felt our API more naturally allowed users to convey topologi-
cal characteristics, which lead to a less error prone configuration
process.

Link types. In addition to standard unicast and multicast links,
our model supports a new unicast link type which we call a direct
VM-to-VM link. VM-to-VM links have the property that traffic sent
over them will not pass over any intermediate layer-2 entities,
such as switches or bridges, a property that is needed for properly
emulating topologies consisting of network elements that may
perform their own custom layer-2 forwarding mechanisms (e.g.,
guest controlled switches). The following section shows how we
implement these links, and Section 4.3 demonstrates topologies in
which they are required for proper forwarding behavior.

Compilation. The network compilation process translates a net-
work specification to a set of commands to configure minimega
and the underlying physical testbed. Our system maintains a list of
links for every node in a topology, which is encoded through calls
to connect_vms in the topology model. At compilation time, the
compiler generates a unique VLAN ID for each link and a virtual
NIC for each link endpoint, as required by the minimega API. Each
virtual NIC has an underlying TAP device configured as a VLAN
access port, tagged with the VLAN ID representing that link, and

CSET ’21, August 9, 2021, Virtual, CA, USA Kocoloski, Hussain, Troglia, Ardi, Cheng, DeAngelis, Symonds, Collins, Goodfellow and Schwab

Table 1: Application types in the traffic specification

Supported Application Description

File Transfer File retrieval via FTP(S), HTTP(S), or SCP
IRC Chat messages posted to a discussion board
Email Email (SMTP) traffic between many hosts
Web Browsing Randomly generated or specified web pages for web-

site navigation via HTTP(S)
Multi-Client Text Editing Text editing interaction over SSH
Video Streaming “One-way” video traffic from a server endpoint to a

client endpoint

is bridged to an Open vSwitch appliance on the host that trans-
mits packets between the link’s endpoints. In situations where the
endpoint VMs of a link are mapped to separate physical nodes, we
configure virtual tunnel endpoints (VTEPs) with a VXLAN based
overlay to transit minimega’s traffic across nodes. This is the default
minimega approach to link emulation.

Experiments that involve custom layer-2 forwarding mecha-
nisms require a different link emulation strategy. The default ap-
proach relies on aMAC address learning strategy to forward packets
between the bridge ports, which we found lead to packet loss in
at least two situations. The first challenge occurs when packets
are forwarded asymmetrically between a source and destination
MAC address. For example, if the path from source address X to
destination Y passes through the host switch, and the “reverse” path
from Y to X does not pass through the switch, then the switch will
never actually learn the route to the destination, instead having
to broadcast all packets destined to Y through each of its ports,
potentially wasting significant memory and network bandwidth
in the process. The second challenge arises due to MAC address
migration, where a given MAC address X is both the source ad-
dress and the destination address on separate packets that arrive
on a given port of the switch. Address migration typically occurs
when VMs are migrated to different hosts, but in one of our use
case studies in Section 4.3, a virtualized guest switch generates this
behavior through its own custom layer-2 forwarding mechanisms.
To solve these issues, we designed VM-to-VM links, for which we
program the switch forwarding databases apriori with the specific
TAP/VTEP device IDs associated with the link endpoints, thereby
allowing packets to be forwarded directly between the two NICs
without relying on MAC address learning.

3.2 Traffic Specification Model
The second component of the EDM is a traffic specification, which
allows users to define a set of applications to run on the network,
where applications range from simple file transfers to more complex
flows representing common real world applications such as video
streaming and web browsing. Our model is designed to make it
easy to define applications by providing a well-defined structural
interface that abstracts away details associated with configuring
binaries and managing process lifecycles. Furthermore, we sought
to allow users to rapidly iterate over diverse sets of applications
and to scale to large topologies, without a commensurate increase
in the complexity of deploying traffic.

An example of a traffic specification is shown in Figure 3. The
user defines a JSON file consisting of a set of applications, where
each application has a set of end-hosts on which it will be deployed.

{
"video-streaming" : {
"h0" : [{
"target" : "h4",
"params" : {

"client" : {
"resolution" : "720",
"protocol" : "hls"

},
"server" : {}

}}]}
}

Figure 3: Example traffic model for Video Streaming

This example shows a single “video-streaming” application with
a single client host “h0” and a single server host “h4”. The clien-
t/server names are human-readable strings that map directly to
node names in the network specification. While this example only
shows a single client and server, the specification allows the user to
encode multiple clients, and each client can target one or multiple
servers. Furthermore, the JSON file can encode as many applica-
tions as the user desires. The example also shows that parameters
(“params”) can be encoded in the specification. Parameters are spe-
cific to each application type and are passed through to the traffic
type’s corresponding binary program when it is deployed on the
client/server end-hosts. The compilation process has default set-
tings of these parameters for each application type, but parameters
give users the opportunity to customize traffic behaviors.

A subset of the applications supported by our system is shown
in Table 1. Several of the applications are implemented via pro-
tonuke [20], a traffic generator developed as part of the minimega
project. This includes the various file transfer variants (FTP(S),
SCP, HTTP(S)), email, web browsing and IRC applications. To sup-
port two additional real world application types, we developed a
multi-client text-editing over SSH application and a video streaming
application.

Text editing over SSH. The text editing over SSH application em-
ulates a typical SSH session running a text editing workload. To
develop the session, we used minimega’s VNC record and replay
functionality to record a sample text editing session. The VNC
recording can then be played back using six different typing varia-
tions to model different speeds and levels of burstiness.

For each SSH application encoded in the traffic model, we first
script a command to create an SSH connection between the specified
client and server. The VNC session is then replayed from the pre-
built recording, using parameters to select speed and burstiness
settings.

Video streaming. The video streaming application serves one-
way traffic from the server to the client. The client uses the Google
chrome web browser to connect to the server, which hosts a set of
video files and supporting website code (HTML, JavaScript). The
server runs a Caddy web server [9] with a configuration to serve a
static website. The server is currently configured to serve the open
source “Big Buck Bunny” video content [27].

Case Studies in Experiment Design on a minimega Based Network Emulation Testbed CSET ’21, August 9, 2021, Virtual, CA, USA

To provide a diverse set of video traffic, the server supports
multiple video streaming protocols, including dynamic adaptive
streaming over HTTP (DASH) [29], HTTP live streaming (HLS) [10],
and native HTML5 streaming [1], as well as multiple video resolu-
tions, including 576p, 720p, and 1080p, which can be selected by
clients in the traffic specification.

Compilation. The compilation process translates an experiment
specification to a set of shell scripts, one for each end-host (traffic
generating node) in the network topology. Each end-host thus runs
a possibly unique set of programs and arguments for those pro-
grams depending on the specification. Compilation entails parsing
the JSON file and maintaining, for each unique host, two set of
applications, one for which it acts as a client and one as a server, as
well as maintaining the parameters passed to the application. Once
the file has been parsed, the compiler serializes the startup process
for each application by generating a shell script that starts and
backgrounds the binaries, as well as a separate script to stop each
binary. These scripts are then issued to the minimega command-
and-control system, miniccc [19].

4 CASE STUDIES: DARPA SEARCHLIGHT
This section showcases our experience on evaluating three re-
search technologies developed as part of the DARPA Searchlight
program [18]. The Searchlight program seeks novel approaches to
analysis andmanagement of an enterprise’s distributed applications
overlaid on the Internet, with the goal of enabling an enterprise to
temporarily decrease the quality of service (QoS) for low-priority
application traffic internal to that organization, resulting in suffi-
cient QoS for the organization’s high-priority traffic.

The technologies address different components of the Search-
light program goals. Section 4.1 discusses APROPOS, a system
for distributed topology discovery; Section 4.2 discusses Fresnel, a
system for real-time traffic classification; and Section 4.3 discusses
DQM, a distributed traffic engineering system to manage quality-of-
service among competing network flows. These following sections
specifically capture our experience on the complexities involved
in evaluating these technologies, and collectively showcase the
technologies required to (1) support a wide range of topologies
to evaluate APROPOS, (2) to generate a large variety of network
application traffic to evaluate Fresnel, and (3) to support networks
with complex layer-2 topological requirements to evaluate DQM.

4.1 Distributed Topology Discovery
APROPOS is a system that attempts to identify network state in real-
time. APROPOS uses distributed sensing mechanisms to discover
network entities (applications and flows), topological characteris-
tics (location of routers, switches, paths, etc.), and performance
characteristics (latency/bandwidth).

Our evaluation of APROPOS focused on its ability to infer topo-
logical characteristics on a variety of network topologies. We con-
structed a set of twelve topologies with sufficient diversity to eval-
uate APROPOS’ different node and path inference mechanisms.
Figure 4 shows the four of those twelve that were specifically devel-
oped for the task of evaluating the inter-node path sensing mecha-
nism, which infers characteristics of the path(s) between any two
APROPOS nodes. Each Figure 4 topology shows three types of

nodes: router nodes running APROPOS software (named a* and
shown in blue); generic router nodes (named b*, c*, and r*); and end-
hosts at the edges of the network (named h*). The four topologies
in Figure 4 represents tests different functionality: Figure 4a – core
with two routers c[0,1]; Figure 4b – core with unique central hub
router c; Figure 4c – core c[0-4] with symmetric and/or asymmetric
routing; Figure 4d – core c[0-3] with equal cost multipath (ECMP)
routing.

In each experiment, APROPOS generated a DOT graph showing
the topological structure it inferred during the experiment. By com-
paring these graphs with ground truth information, we determined
that APROPOS correctly measured paths for the double dumbbell
and star topologies (Figure 4a and 4b). We determined that APRO-
POS could correctly infer paths when all of the core routers c[0-4] in
the 5-node loop topology (Figure 4c) were configured to route pack-
ets in both directions (symmetric) as well as only in the “clockwise”
direction along the loop (asymmetric), but was not yet capable of
detecting multi-path ECMP routes in the 4-node loop topology (Fig-
ure 4d). We were able to rapidly run these experiments, as well as
others that evaluated additional APROPOS inference mechanisms,
because they differed only in their respective network definition
files.

4.2 Real-time Traffic Classification
The Fresnel system identifies traffic flows on the network in real-
time.While flow classification is a well addressed problem, Fresnel’s
goal is to be able to identify flows even in VPN/tunnel encapsu-
lated traffic and also estimate the path(s) that flows are taking. The
system has two main processes: a packet handling process and
an analysis process. The packet handling process ingests packets
captured on the network using DPDK [24] and creates signatures
for the flows it sees based on first-order statistics. The analysis then
preprocesses signatures, calculates flow attributes moments, and
then bins the observed moments to create tensors subsequently
used by a clustering algorithm for flow classification.

Fresnel was evaluated on its ability to identify many different
application flows and classes in the context of an 18 node topology
similar to the one in Figure 4a. Fresnel was deployed as a layer-2
“bump in the wire” on intermediary layer-2 nodes that sat between
each pair of a and b nodes (not shown in Figure 4a).

We developed a range of scenarios to collectively stress Fresnel
in a variety of ways, including scaling up the number of concurrent
flows to be captured, tagged and clustered. Table 2 lists types of
application traffic we used for the scenarios. The first five scenarios
evaluate the file transfer classification capability of the system,
covering a range of protocols including FTP, FTPS, HTTP, HTTPS,
and SCP. The next five scenarios evaluate how effective Fresnel is in
classifying text editing over SSH and include a range of speeds and
user behaviors, namely slow, medium, and fast speeds with bursty
or continuous behaviors. Finally, the last six scenarios evaluate
Fresnel’s classification of video streams over a range of protocols
including DASH [29], HLS [10], and HTML5 [1] and resolutions of
1080p, 720p and 576p.

We combined these traffic types to create a total of 26 differ-
ent combinations of applications to evaluate Fresnel’s ability to
simultaneously classify multiple distinct traffic classes. In total,

CSET ’21, August 9, 2021, Virtual, CA, USA Kocoloski, Hussain, Troglia, Ardi, Cheng, DeAngelis, Symonds, Collins, Goodfellow and Schwab

h0

b0 a0 c0 a1 b1

h2

h3h1

h4

b2 a2 c1 a3 b3

h6

h7h5
(a) Double dumbbell

h0

b0 a0 r0

h1

c

r1

a1

b1h2 h3

r2 a2 b2

h4

h5r3

a3

r3h6 h7
(b) Star

h0 b0 a0 c0

c1

a1

b1

h1

c2

a2

b2

h2

c3 a3 b3 h3

c4

a4

b4

c4
(c) 5-node loop

h0

b0

a0

c0

c1

a1

b1

h1

c2

a2

b2

h2

c3

h3

b3

a3

(d) 4-node loop

Figure 4: Subset of the topologies developed for the APROPOS evaluation

we conducted over 500 individual experiment runs for the above
26 different combinations to develop a complete capability and
performance characterization. Our traffic specification model was

fundamental to enabling the rapid construction of these scenar-
ios, as it internalized the process of managing process lifecycles,

Case Studies in Experiment Design on a minimega Based Network Emulation Testbed CSET ’21, August 9, 2021, Virtual, CA, USA

Table 2: Applications used to evaluate Fresnel

Traffic Type Description

FTP 200MB file transfer using the FTP protocol
FTPS 200MB file transfer using the FTPS protocol
HTTP 1GB image transfer using the HTTP protocol
HTTPS 1GB image transfer using the HTTPS protocol
SCP 1GB image transfer using the SCP protocol
text edit slow emulated user typing at 60 characters/min
text edit medium emulated user typing at 200 characters/min
text edit fast emulated user typing at 400 characters/min
text edit bursty emulated user typing with page up and page down

every 100 characters and delay of 1-10 seconds
text edit continuous emulated user without any delays
video DASH streaming video over the DASH protocol
video HLS streaming video over the HLS protocol
video HTML5 streaming video via native HTML5
video hi-res steaming with a high resolution of 1080p
video medium-res steaming with a medium resolution of 720p
video low-res steaming with a low resolution of 576p

constructing and deploying shell scripts for each end-host, and
interfacing with the miniccc [19] command-and-control system.

4.3 Distributed Traffic Engineering
DQM is a distributed traffic engineering system that works in-
side the network to manage enterprise network usage by balanc-
ing among competing flows that include both enterprise and non-
enterprise traffic. DQM interfaces between two separate entities: (1)
a high-level operator that specifies application classes and desired
QoS metrics for those classes, and (2) a flow identification system,
such as APROPOS or Fresnel, that monitors a network and informs
DQM about flows of interest. As DQM monitors a network, if it
discovers that a Gold flow (highest priority) is not receiving its
target bandwidth rate, it determines if any lower priority Bronze
flows are competing with it, and if so, reduces the Bronze flows’
bandwidth without interfering with non-enterprise. It does this
in the middle of a network through a technique called actuation.
Actuation involves programming an OpenFlow switch to redirect
relevant flows through a DQM-controlled node called an actuator
which then adjusts the flows’ bitrates using a variety of techniques,
such as dropping a percentage of packets.

Figure 5 shows a topology that was used for one of our DQM eval-
uation scenarios. In this example, a set of four end-hosts h{0,1,2,3}
send traffic across a network connected by two border routers b{0,1}
and one core router c0. Two OpenFlow switches (Open vSwitch
appliances in minimega VMs) s[0,1] connect the border routers and
core router, and also have DQM actuator components d[0,1] con-
nected via twoVM-to-VM links each. DQMprograms the flow tables
on these switches based on information in the Operator Intent so
that, when flows that are Gold/Bronze flow through at runtime and
need to have their bitrates adjusted, they can be redirected to d[0,1].
Due to the way in which DQM manages these OpenFlow switches,
behaviors such as MAC address migration and asymmetric routing
may occur, which necessitated the development of VM-to-VM layer
2 link support in minimega, as discussed in Section 3.1.

To evaluate DQM required generating topology and traffic spec-
ifications via our EDM framework as well as an Operator Intent
to associate each traffic type with an application class and desired

h0

b0

d0

c0 s1

d1

b1

h2

h3

s0

h1

End-host/Router

OpenFlow Switch

DQM Actuator

Figure 5: Example evaluation topology for DQM

Figure 6: Effects of DQM on competing traffic

bandwidth allocation. An example experiment is illustrated in Fig-
ure 6, in which a total of four flows (one Gold, one Bronze, and two
Silver) compete for 50 Mbps of bandwidth (all flows have a source in
h[0,1] and destination in h[2,3]. The figure shows 10 second smooth
moving average (SMA) of bandwidth utilized by Gold, Bronze, and
Silver (S1, S2) flows over the 10 minutes of experiment activity. The
figure shows two distinct periods of activity: the first five minutes
in which DQM’s QoS mechanisms are disabled, and five subsequent
minutes starting near the 14:28 mark during which DQM is running.
The graph shows that the Bronze and Gold flows, each of which
use TCP, initially compete for about 32 Mbps of bandwidth (the
remaining 18 Mbps is utilized by the two fixed-rate Silver flows,
which each consume 9 Mbps). After actuation, the Bronze flows
have their aggregate utilization dropped to a total of about 5 Mbps,
while the Gold flows achieve around 25 Mbps, which was the be-
havior specified by the Operator Intent. This experiment illustrated
DQM’s successful operation, and showcased our model’s ability to
support experiments with relatively complex layer-2 topological
requirements in the form of VM-to-VM links.

5 TAKEAWAYS
Nuances in link emulation. Minimega’s link emulation mecha-

nism entails connecting virtual NICs to a host switch, which uses
MAC address learning to forward traffic between the VMs. While
this mechanism worked for the majority of our use cases, we en-
countered situations in our DQM evaluation in which more ad-
vanced mechanisms were needed, due to the presence of asymmet-
ric routing and MAC address migration. To address these issues,
we developed “VM-to-VM” links as discussed in Section 3.1. We
suspect that other users would need similar functionality in situa-
tions where custom layer-2 forwarding mechanisms are occurring
in the VMs. More generally, we found that our link-based network

CSET ’21, August 9, 2021, Virtual, CA, USA Kocoloski, Hussain, Troglia, Ardi, Cheng, DeAngelis, Symonds, Collins, Goodfellow and Schwab

model enabled us to more easily and rapidly define topologies than
the existing VM-based minimega API.

Traffic generation challenges. Creating representative traffic typi-
cally requires supporting a wide range of protocols and applications,
as well as providing ground-truth and tractability over the traffic
generation capabilities. minimega’s protonuke provided a good
starting point for us, but we needed to augment it in several ways
in order to improve traffic usability and realism on our testbed.

We initially struggled to use some protonuke applications that
serve content, due to the fact that they required the ability to reach
the Internet, which VMs did not have access to by default in our
testbed. To address this issue, we configured protonuke to serve
from pre-generated content directly. This exemplifies how intended
usage models that architects envision may not always match the
way in which users use the system, and often occurs when adapting
off-the-shelf technologies to new environments.

We developed new applications in order to test more realistic
real world traffic such as multi-client text editing and video stream-
ing. This improved our coverage of realistic scenarios and helped
improve confidence that the results of our evaluations had some
applicability to the real world. Finally, in order to make our ex-
perimentation more rapid, we developed a traffic model as part of
our EDM that provided a single interface through which to encode
desired traffic types, as discussed in Section 3.2. We continue to
enhance our traffic generation capabilities, and we believe that hav-
ing a standardized, centralized interface through which to select
and deploy applications will increase adoption.

Managing evaluation process. While the EDM allowed us to more
rapidly iterate through experimental scenarios when evaluating
the three research prototypes, minimega has several other features
that proved useful by themselves. One of the most useful for us was
image snapshots. By default, minimega boots VMs on read-only
snapshots of their image. This makes it possible to both use the
same image for a large number of hosts that should run the same
software (e.g., routers), and to prevent accidental image corruption
when large numbers of team members are running experiments.
In situations where the image needed to be modified, we gave one
team member the responsibility to boot the image in read/write
mode to make changes.

We made use of several additional minimega features, including
its DNS and DHCP servers, traffic shapers for setting link perfor-
mance constraints, andminirouter for configuring routing protocols
in an experiment.We found these features to be able to capture most
of our requirements, which obviated the need to make frequent
changes to our images.

6 CONCLUSION
This paper captures our experience using minimega [21], an off-the-
shelf network emulation system, to support the process of defining
and running a large set of complex experiments on the DETER
testbed [34] for the DARPA SearrchLight program. We discussed
our approach to enable more rapid and less error prone experiment
design through an abstraction called the experiment description
model. We then presented three case studies of prototype systems
for topology discovery, flow classification, and traffic engineering.

We concluded with takeaways describing our experience more
generally. We hope this paper will help to enable future evaluations
of complex large scale systems using minimega.

All models, tools and data developed for this paper can be found
online at https://mergetb.org/projects/searchlight.

ACKNOWLEDGMENTS
This research was developed with funding from the Defense Ad-
vanced Research Projects Agency (DARPA).

This paper describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the paper
do not necessarily represent the views of the U.S. Department of
Energy or the United States Government.

REFERENCES
[1] Gary Anthes. 2012. HTML5 Leads a Web Revolution. Commun. ACM 55, 7 (2012),

16–17.
[2] Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jennifer Rexford.

2006. In VINI Veritas: Realistic and Controlled Network Experimentation. In
Proceedings of the 2006 Conference on Applications, Technologies, Architectures and
Protocols for Computer Communications ((SIGCOMM)).

[3] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Pro-
ceedings of the Usenix Annual Technical Conference ((ATC)).

[4] Terry Benzel. 2011. The Science of Cyber Security Experimentation: The DETER
Project. In Proceedings of the 27th Annual Computer Security Applications Confer-
ence (Orlando, Florida, USA) (ACSAC ’11). Association for Computing Machinery,
New York, NY, USA, 137–148. https://doi.org/10.1145/2076732.2076752

[5] Tomasz Buchert, Emmanuel Jeanvoine, and Lucas Hussbaum. 2014. Emulation at
Very Large Scale with Distem. In Proceedings of the 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing ((CCGRID)).

[6] Lelio Campanile, Marco Gribaudo, Mauro Iacono, Fiammetta Marulli, andMichele
Mastroianni. 2020. Computer Network Simulation with ns-3: A Systematic Liter-
ature Review. Electronics 9, 2 (2020). https://doi.org/10.3390/electronics9020272

[7] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike
Wawrzoniak, and Mic Bowman. 2003. PlanetLab: An Overlay Testbed for Broad-
Coverage Services. ACM SIGCOMM Computer Communications Review 33, 3
(2003).

[8] Jonathan Crussell, Thomas M. Kroeger, Aaron Brown, and Cythnia Phillips. 2019.
Virtually the Same: Comparing Physical and Virtual Testbeds. In Proceedings of
the 2019 International Conference on Computing, Networking and Communications
((ICNC)). 847–853.

[9] Caddy developers. 2021. Caddy - The Ultimate Server. https://caddyserver.com.
[Online: accessed 2020-06-30].

[10] Andrew Fecheyr-Lippens. 2010. A Review of HTTP Live Streaming. http://files.
andrewsblog.org/http_live_streaming.pdf. [Online: accessed 2021-02-17].

[11] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick
McKeown. 2012. Reproducible Network Experiments Using Container-Based Em-
ulation. In Proceedings of the 8th International Conference on emerging Networking
EXperiments and Technologies ((CoNext)).

[12] Fabien Hermenier and Robert Ricci. 2012. How to Build a Better Testbed: Lessons
from a Decade of Network Experiments on Emulab. In Testbeds and Research
Infrastructure: Development of Networks and Communities, Thanasis Korakis,
Michael Zink, and Maximilian Ott (Eds.). Springer, 287–304.

[13] Alefiya Hussain, Prateek Jaipuria, Geoff Lawler, Stephen Schwab, and Terry
Benzel. 2020. Toward Orchestration of Complex Networking Experiments. In
Proceedings of the 13th USENIX Workshop on Cyber Security Experimentation and
Test ((CSET ’20)).

[14] Teerawat Issariyakul and Ekram Hossain. 2012. Introduction to Network Simulator
NS2. Springer.

[15] Kate Keahey, Joe Mambretti, Paul Ruth, and Dan Stanzione. 2019. Chameleon:
A Large-Scale, Deeply Reconfigurable Testbed for Computer Science Research.
In Proceedings of the 27th IEEE International Conference on Network Protocols
((ICNP)).

[16] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. kvm:
the Linux Virtual MachineMonitor. In The 2007 Ottawa Linux Symposium ((OLS)).

[17] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit
Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM Is Lighter
(and Safer) than your Container. In Proceedings of the 26th ACM Symposium on
Operating System Principles ((SOSP)).

[18] Mr. John-Francis Mergen. 2018. Searchlight. https://www.darpa.mil/program/
searchlight. [Online: accessed 2020-06-30].

https://mergetb.org/projects/searchlight
https://doi.org/10.1145/2076732.2076752
https://doi.org/10.3390/electronics9020272
https://caddyserver.com
http://files.andrewsblog.org/http_live_streaming.pdf
http://files.andrewsblog.org/http_live_streaming.pdf
https://www.darpa.mil/program/searchlight
https://www.darpa.mil/program/searchlight

Case Studies in Experiment Design on a minimega Based Network Emulation Testbed CSET ’21, August 9, 2021, Virtual, CA, USA

[19] minimega authors. 2016. Command and Control API. https://tip.minimega.org/
articles/tutorials/cc.article. [Online: accessed 2021-02-17].

[20] minimega authors. 2016. protonuke simple traffic generation. https://tip.
minimega.org/articles/protonuke.article. [Online: accessed 2021-02-17].

[21] minimega authors. 2019. minimega: a distributed VM management tool. https:
//tip.minimega.org/. [Online: accessed 2021-02-17].

[22] RonaldMinnich and Don Rudish. 2010. TenMillion and One Penguins, or, Lessons
Learned from bootingmillions of virtual machines onHPC systems. In Proceedings
of the 4thWorkshop on System-level Virtualization for High Performance Computing
((HPCVirt)).

[23] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Ra-
jahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon,
and Martin Casado. 2015. The Design and Implementation of Open vSwitch. In
Proceedings of the 12th USENIX Symposium on Networked Systems Design and
Implementation ((NSDI)). https://www.usenix.org/conference/nsdi15/technical-
sessions/presentation/pfaff

[24] The Linux Foundation Projects. 2021. DPDK: Data Plane Development Kit.
https://dpdk.org. [Online: accessed 2021-05-05].

[25] Thierry Rakotoarivelo, Maximilian Ott, Guillaume Jourjon, and Ivan Seskar. 2010.
OMF: A Control and Management Framework for Networking Testbeds. SIGOPS
Oper. Syst. Rev. 43, 4 (2010), 54–59. https://doi.org/10.1145/1713254.1713267

[26] Robert Ricci and Eric Eide. 2014. Introducing CloudLab: Scientific Infrastructure
for Advancing Cloud Architectures and Applications. ;login: the magazine of
USENIX 39, 6 (2014), 36–38.

[27] Ton Roosendaal. 2008. Big Buck Bunny. In Proceedings of the ACM SIGGRAPH
ASIA 2008 Computer Animation Festival ((SIGGRAPH Asia ’08)). 62.

[28] Rusty Russell. 2008. Virtio: Towards a de-Facto Standard for Virtual I/O Devices.
SIGOPS Oper. Syst. Rev. 42, 5 (2008), 95–103. https://doi.org/10.1145/1400097.

1400108
[29] Thomas Stockhammer. 2011. Dynamic Adaptive Streaming over HTTP –: Stan-

dards and Design Principles. In Proceedings of the Second Annual ACM Con-
ference on Multimedia Systems (San Jose, CA, USA) ((MMSys ’11)). 12 pages.
https://doi.org/10.1145/1943552.1943572

[30] Andras Varga. 2019. A Practical Introduction to the OMNeT++ Simulation Frame-
work. In Recent Advances in Network Simulation: The OMNeT++ Environment
and its Ecosystem, Antonio Virdis and Michael Kirsche (Eds.). Vol. 1. Springer
International Publishing, 3–51. https://doi.org/10.1007/978-3-030-12842-5_1

[31] Sander Vrijders, Dimitri Staessens, Marco Capitani, and Vincenzo Maffione. 2018.
Rumba: a Python Framework for Automating Large-Scale Recursive Internet
Experiments on GENI and FIRE+. In Proceedings of the Workshop on Computer
and Networking Experimental Research Using Testbeds ((CNERT ’18)).

[32] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. 2003. An Integrated
Experimental Environment for Distributed Systems and Networks. SIGOPS Oper.
Syst. Rev. 36, SI (2003), 255–270. https://doi.org/10.1145/844128.844152

[33] Alex Williamson. 2012. VFIO: A user’s perspective. https://www.linux-kvm.org/
images/b/b4/2012-forum-VFIO.pdf. In Proceedings of the KVM Forum. [Online:
accessed 2021-05-05].

[34] John Wroclawski, Terry Benzel, Jim Blythe, Ted Faber, Alefiya Hussain, Jelena
Mirkovic, and Stephen Schwab. 2016. DETERLab and the DETER Project. In
The GENI Book, Rick McGeer, Mark Berman, Chip Elliott, and Robert Ricci (Eds.).
Springer International Publishing, 35–62. https://doi.org/10.1007/978-3-319-
33769-2_3

[35] Yukun Zeng, Mengyuan Chao, and Radu Stoleru. 2019. EmuEdge: A Hybrid
Emulator for Reproducible and Realistic Edge Computing Environments. In
Proceedings of the 2019 IEEE Conference on Fog Computing ((ICFC)).

https://tip.minimega.org/articles/tutorials/cc.article
https://tip.minimega.org/articles/tutorials/cc.article
https://tip.minimega.org/articles/protonuke.article
https://tip.minimega.org/articles/protonuke.article
https://tip.minimega.org/
https://tip.minimega.org/
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://dpdk.org
https://doi.org/10.1145/1713254.1713267
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/1943552.1943572
https://doi.org/10.1007/978-3-030-12842-5_1
https://doi.org/10.1145/844128.844152
https://www.linux-kvm.org/images/b/b4/2012-forum-VFIO.pdf
https://www.linux-kvm.org/images/b/b4/2012-forum-VFIO.pdf
https://doi.org/10.1007/978-3-319-33769-2_3
https://doi.org/10.1007/978-3-319-33769-2_3

	Abstract
	1 Introduction
	2 Related Work
	3 Experiment Description Model
	3.1 Network Specification Model
	3.2 Traffic Specification Model

	4 Case Studies: DARPA Searchlight
	4.1 Distributed Topology Discovery
	4.2 Real-time Traffic Classification
	4.3 Distributed Traffic Engineering

	5 Takeaways
	6 Conclusion
	Acknowledgments
	References

