
Case Studies in Experiment
Design on a minimega Based
Network Emulation Testbed

Brian Kocoloski
USC/ISI

Alefiya Hussain
USC/ISI

Matthew Troglia
Sandia National Labs

Calvin Ardi
USC/ISI

Steven Cheng
Sandia National Labs

Dave DeAngelis
USC/ISI

Christopher Symonds
Sandia National Labs

Michael Collins
USC/ISI

Ryan Goodfellow
USC/ISI

Stephen Schwab
USC/ISI

2021 Workshop on Cyber Security Experimentation and Test (CSET ‘21)
1

DARPA Searchlight Program

● Enterprises need better tools to (1) understand network activity, and (2) manage quality of service

● TA1: Network traffic analysis
○ What does a network look like? What is the topology, what are the paths, etc.

○ What protocols, and more specifically, what applications are on the network?

○ What are the network’s performance characteristics?

● TA2: Network resource management
○ Manage QoS between multiple applications of different priorities

○ Communicates with a TA1 to understand network behavior and state

2

3Source: https://sam.gov/api/prod/opps/v3/opportunities/resources/files/c48c47baaa1db4b26a023b3426d838ba/download?&status=archived&token=

https://sam.gov/api/prod/opps/v3/opportunities/resources/files/c48c47baaa1db4b26a023b3426d838ba/download?&status=archived&token=

Test and Evaluation Challenges

● Our objective: systematically evaluate TA1 and TA2 technologies on a variety of representative

network conditions and applications

● TA1 evaluation challenges:
○ Evaluate classification accuracy of different applications on the network

■ Many combinations of applications make its job harder

○ Evaluate many different network topologies and network resource configurations

○ Understand impact of VPNs/tunnels on TA1 capabilities

● TA2 evaluation challenges:
○ Deploy high fidelity networks capable of supporting custom layer-2 forwarding applications

■ Virtual Openflow switches, DPDK applications, etc

4

minimega

● Virtualization based network emulation tool from Sandia National Laboratories

● Define and launch VM-based networks through Qemu/KVM

● Layer-2 network virtualized with VLAN-based software bridge (OpenvSwitch), with VXLAN

tunnels for emulating networks that span physical nodes

● Orchestrate runtime behavior through a custom command-and-control system
5

https://tip.minimega.org

https://tip.minimega.org

Our experience with minimega

Features we liked and made use of:
● High resource utilization

○ We were somewhat resource limited on our physical testbed (DeterLAB) at the time
● Zero configuration for DHCP/DNS
● minirouter and its centralized routing interface

○ We used a combination of static and OSPF based routing
● Management of images through Qemu snapshots

Challenges we encountered:
● Topology modeling
● Configuration and deployment of traffic

Our experimental needs required us to run several hundreds of experiments with a mixture of different
topologies and application traffic mixes

6

Topology Modeling

● Maintaining lists of VLAN tags can get
cumbersome, particularly as topologies
grow in size and complexity

● Users of other network emulation testbeds
(e.g., Emulab) are often familiar with
link-centric specification methods
○ Specify links with endpoints, instead of

nodes with network interface cards

7

foo8 foo9

for i in $(seq 0 7); do
 vm config net foo$i
 vm config h$i
done
vm config net foo0,foo1,foo2,foo3,foo8
vm start c0
vm config net foo4,foo5,foo6,foo7,foo9
vm start c2
vm config net foo8,foo9
vm start c1

Topology Modeling

Alternative Network Model

for i in $(seq 0 3); do
 connect_vms h$i c0
done

for i in $(seq 4 7); do
 connect_vms h$i c2
done

connect_vms c0 c1
connect_vms c2 c1

8

foo8 foo9

for i in $(seq 0 7); do
 vm config net foo$i
 vm config h$i
done
vm config net foo0,foo1,foo2,foo3,foo8
vm start c0
vm config net foo4,foo5,foo6,foo7,foo9
vm start c2
vm config net foo8,foo9
vm start c1

Topology Modeling: VM-to-VM Links

9

h0

d0

h1s0
Router

OpenFlow Switch

DPDK Actuator h0
minimega Switch

d0

h1

s0

● Minimega switches use source MAC address learning
● This causes problems when guest software implements custom

layer-2 forwarding mechanisms or performs asymmetric routing
● We developed VM-to-VM links that remove MAC learning
● More details in the paper

Traffic Modeling

● Minimega has limited traffic generation support through the protonuke traffic generator

● Deployment of traffic is done by developing shell scripts which minimega issues to each unique
traffic generating end-host

● Challenges:
○ We found ourselves generating redundant shell scripts with significant overlap for things like managing

process lifecycles and copying support bundles
○ Lack of traffic realism

● 3 contributions:
○ Development of a set of new traffic applications that extend minimega’s native protonuke support.
○ Development of a common JSON-based structural abstraction that encodes application configuration
○ Compiler which automates the construction of shell scripts commands

10

Traffic Modeling: Video Streaming Example

{
 “video-streaming” : {
 “h0” : [{
 “target” : “h2”,
 “params” : {
 “client” : {
 “resolution” : “720”,
 “protocol” : “hls”
 },
 “server” : {}
 }
 }]
 }
}

11

Traffic Modeling: Video Streaming Example

{
 “video-streaming” : {
 “h0” : [{
 “target” : “h2”,
 “params” : {
 “client” : {
 “resolution” : “720”,
 “protocol” : “hls”
 },
 “server” : {}
 }
 }]
 }
}

12

cc exec bash -c "rm -rf /tmp/miniccc/files/miniccc_files//video-streaming/"
cc send miniccc_files/protonuke
clear cc filter
cc filter name=h2
cc send miniccc_files/video-streaming/www.tar.gz
cc send miniccc_files/video-streaming/extract-www-tar.sh
cc exec bash -c
"/tmp/miniccc/files/miniccc_files/video-streaming/extract-www-tar.sh"
cc background /root/www-video/run.sh
clear cc filter
cc filter name=h0
cc send miniccc_files/video-streaming/client-watch-video.tar.gz
cc send miniccc_files/video-streaming/extract-client-watch-video-tar.sh
cc exec bash -c
"/tmp/miniccc/files/miniccc_files/video-streaming/extract-client-watch-video-tar.sh"
cc background sudo -u searchlight /home/searchlight/client-watch-video/run.sh
--server h2:8001 --resolution 720 --protocol hls --time 3

Traffic Types

● Several types supported natively by protonuke
○ File transfer with many protocol variants (SCP, HTTP(s), FTP(s))

○ IRC

○ Email (SMTP)

○ Web Browsing

● Additional types developed by our team
○ SSH text editing

○ Video Streaming

■ HLS, DASH, and HTML5 based options supported

● Compilation
○ Our scripts compile a single JSON based traffic representation into a set of scripts for each client or server

endpoint in the topology

○ Removes the need to develop a large collection of miniccc scripts

13

Case Study: Distributed Topology Discovery

14

Objective: evaluate how well the system could measure the topological characteristics
● Connectivity, routing (asymmetry + multipath), link criteria (delay/bandwidth/loss)

Case Study: Real-Time Traffic Classification

Objective: evaluate the system’s ability to infer the set of applications on the network

● We developed a large collection of unique subsets of applications and determined classification

accuracy

● Over 500 individual experiments using 26 different combinations of applications

● Structured, centralized interface to define traffic was instrumental in automating these

experiments

15

Case Study: Distributed Traffic Engineering

16

● Objective: evaluate how well the system could achieve a target QoS specification (bandwidth for each
application)

● Required VM-to-VM links due to the use of OpenFlow switches in the topology that could generate
MAC address migration from the perspective of the minimega OVS switch

Takeaways and Conclusion

● Minimega is a useful, mature tool
○ Zero configuration DHCP/DNS
○ Centralized router configuration
○ VM lifecycles management
○ Image management

● We extended it to make it easier to run a lot of experiments that vary in subtle ways
○ Link centric models instead of VM centric in the minimega API
○ VM-to-VM links to address MAC learning problems
○ Centralized and automated traffic generation routines

● Models developed to run the experiments in the paper will soon be available online:
https://mergetb.org/projects/searchlight

● Thanks to the minimega community for a great testbed tool

17

Brian Kocoloski
bkocolos@isi.edu

https://mergetb.org/projects/searchlight
mailto:bkocolos@isi.edu

Backup Slides

18

Topology Modeling: VM-to-VM Links

19

h0

d0

h1s0
Router

OpenFlow Switch

DPDK Actuator h0
OVS Switch

d0

h1

s0

?

Topology Modeling: VM-to-VM Links

20

h0

d0

h1s0
Router

OpenFlow Switch

DPDK Actuator h0
OVS Switch

d0

h1

s0

● Switch uses a switch forwarding database (FDB) to determine
how to forward packets between TAP devices

● FDB is constructed through MAC address learning. This lead to
at least two issues for us when:
○ Guest switches implement custom layer-2 forwarding

mechanisms
○ Guest routers construct asymmetric routes

● MAC learning based forwarding becomes problematic, leading to
excessive BUM traffic broadcast and/or packet loss

Topology Modeling: VM-to-VM Links

21

h0

d0

h1s0
Router

OpenFlow Switch

DPDK Actuator h0
OVS Switch

d0

h1

s0

Solution: program minimega switch FDB with
known device endpoints; e.g.:

connect_vms s0 d0
mark_v2v s0 d0

Removes MAC learning from FDB construction

